Hastings A
Division of Environmental Studies, University of California, Davis 95616.
J Math Biol. 1990;28(3):329-40. doi: 10.1007/BF00178781.
Biallelic models which ignore linkage disequilibrium have been used to study variability maintained by mutation in the presence of Gaussian stabilizing selection. Recent work of Barton (1986) showed that these models have stable equilibria at which the mean phenotype differed from the optimum, and that the variability maintained at such equilibria would be higher than at the symmetric equilibria calculated by Bulmer (1980) and others. Here I determine the bifurcation structure of this model, and confirm and extend Barton's results. The form of the bifurcations gives information about the domains of attraction of various equilibria, and shows why the nonsymmetric equilibria may not be observed. The techniques may prove useful in the analysis of other population genetic models.
忽略连锁不平衡的双等位基因模型已被用于研究在高斯稳定选择存在的情况下由突变维持的变异性。巴顿(1986年)最近的研究表明,这些模型具有稳定的平衡点,在这些平衡点处平均表型与最优值不同,并且在这些平衡点维持的变异性将高于布尔默(1980年)等人计算的对称平衡点处的变异性。在这里,我确定了该模型的分岔结构,并证实和扩展了巴顿的结果。分岔的形式给出了关于各种平衡点吸引域的信息,并说明了为什么可能观察不到非对称平衡点。这些技术可能在分析其他群体遗传模型时有用。