Suppr超能文献

多任务学习的泛化界:从向量值函数学习的角度。

Generalization Bounds of Multitask Learning From Perspective of Vector-Valued Function Learning.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):1906-1919. doi: 10.1109/TNNLS.2020.2995428. Epub 2021 May 3.

Abstract

In this article, we study the generalization performance of multitask learning (MTL) by considering MTL as a learning process of vector-valued functions (VFs). We will answer two theoretical questions, given a small size training sample: 1) under what conditions does MTL perform better than single-task learning (STL)? And 2) under what conditions does MTL guarantee the consistency of all tasks during learning? In contrast to the conventional task-summation based MTL, the introduction of VF form enables us to detect the behavior of each task and the task-group relatedness in MTL. Specifically, the task-group relatedness examines how the success (or failure) of some tasks affects the performance of the other tasks. By deriving the specific deviation and symmetrization inequalities for VFs, we obtain a generalization bound for MTL to the upper bound of the joint probability that there is at least one task with a large generalization gap. To answer the first question, we discuss how the synergic relatedness between task groups affects the generalization performance of MTL and shows that MTL outperforms STL if almost any pair of complementary task groups is predominantly synergic. Moreover, to answer the second question, we present a sufficient condition to guarantee the consistency of each task in MTL, which requires that the function class of each task should not have high complexity. In addition, our findings provide a strategy to examine whether the task settings will enjoy the advantages of MTL.

摘要

在本文中,我们通过将多任务学习(MTL)视为向量值函数(VF)的学习过程来研究其泛化性能。我们将回答两个理论问题,即给定一个小样本训练集:1)在什么条件下 MTL 比单任务学习(STL)表现更好?2)在什么条件下 MTL 能保证学习过程中所有任务的一致性?与传统的基于任务求和的 MTL 不同,VF 形式的引入使我们能够检测 MTL 中每个任务的行为和任务组之间的相关性。具体来说,任务组相关性检验某些任务的成功(或失败)如何影响其他任务的性能。通过为 VF 推导出特定的偏差和对称不等式,我们得到了 MTL 的泛化界,以联合概率的上限表示至少有一个任务具有较大泛化差距的概率。为了回答第一个问题,我们讨论了任务组之间的协同相关性如何影响 MTL 的泛化性能,并表明如果几乎任何一对互补的任务组主要是协同的,那么 MTL 优于 STL。此外,为了回答第二个问题,我们提出了一个充分条件来保证 MTL 中每个任务的一致性,这要求每个任务的函数类不应具有很高的复杂度。此外,我们的发现提供了一种策略来检查任务设置是否会受益于 MTL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验