Suppr超能文献

基于支持向量机模型的正则化多任务学习的功效

Efficacy of Regularized Multitask Learning Based on SVM Models.

作者信息

Chen Shaohan, Fang Zhou, Lu Sijie, Gao Chuanhou

出版信息

IEEE Trans Cybern. 2022 Aug 22;PP. doi: 10.1109/TCYB.2022.3196308.

Abstract

This article investigates the efficacy of a regularized multitask learning (MTL) framework based on SVM (M-SVM) to answer whether MTL always provides reliable results and how MTL outperforms independent learning. We first find that the M-SVM is Bayes risk consistent in the limit of a large sample size. This implies that despite the task dissimilarities, the M-SVM always produces a reliable decision rule for each task in terms of the misclassification error when the data size is large enough. Furthermore, we find that the task-interaction vanishes as the data size goes to infinity, and the convergence rates of the M-SVM and its single-task counterpart have the same upper bound. The former suggests that the M-SVM cannot improve the limit classifier's performance; based on the latter, we conjecture that the optimal convergence rate is not improved when the task number is fixed. As a novel insight into MTL, our theoretical and experimental results achieved an excellent agreement that the benefit of the MTL methods lies in the improvement of the preconvergence-rate (PCR) factor (to be denoted in Section III) rather than the convergence rate. Moreover, this improvement of PCR factors is more significant when the data size is small. In addition, our experimental results of five other MTL methods demonstrate the generality of this new insight.

摘要

本文研究基于支持向量机的正则化多任务学习(MTL)框架(M-SVM)的有效性,以回答MTL是否总能提供可靠结果以及MTL如何优于独立学习。我们首先发现,在大样本量的极限情况下,M-SVM与贝叶斯风险一致。这意味着,尽管任务存在差异,但当数据量足够大时,就误分类误差而言,M-SVM总能为每个任务产生可靠的决策规则。此外,我们发现随着数据量趋于无穷大,任务交互消失,M-SVM及其单任务对应物的收敛速率具有相同的上限。前者表明M-SVM无法提高极限分类器的性能;基于后者,我们推测当任务数量固定时,最优收敛速率不会提高。作为对MTL的一种新颖见解,我们的理论和实验结果达成了极佳的一致,即MTL方法的优势在于提高预收敛速率(PCR)因子(将在第三节中表示)而非收敛速率。此外,当数据量较小时,PCR因子的这种提高更为显著。此外,我们对其他五种MTL方法的实验结果证明了这一新见解的普遍性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验