Shen Xiao, Dai Quanyu, Mao Sitong, Chung Fu-Lai, Choi Kup-Sze
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):1935-1948. doi: 10.1109/TNNLS.2020.2995483. Epub 2021 May 3.
Network embedding is a highly effective method to learn low-dimensional node vector representations with original network structures being well preserved. However, existing network embedding algorithms are mostly developed for a single network, which fails to learn generalized feature representations across different networks. In this article, we study a cross-network node classification problem, which aims at leveraging the abundant labeled information from a source network to help classify the unlabeled nodes in a target network. To succeed in such a task, transferable features should be learned for nodes across different networks. To this end, a novel cross-network deep network embedding (CDNE) model is proposed to incorporate domain adaptation into deep network embedding in order to learn label-discriminative and network-invariant node vector representations. On the one hand, CDNE leverages network structures to capture the proximities between nodes within a network, by mapping more strongly connected nodes to have more similar latent vector representations. On the other hand, node attributes and labels are leveraged to capture the proximities between nodes across different networks by making the same labeled nodes across networks have aligned latent vector representations. Extensive experiments have been conducted, demonstrating that the proposed CDNE model significantly outperforms the state-of-the-art network embedding algorithms in cross-network node classification.
网络嵌入是一种高效的方法,可用于学习低维节点向量表示,同时能很好地保留原始网络结构。然而,现有的网络嵌入算法大多是针对单一网络开发的,无法学习不同网络之间的通用特征表示。在本文中,我们研究了一个跨网络节点分类问题,其目的是利用源网络中丰富的标记信息来帮助对目标网络中的未标记节点进行分类。为了成功完成这样的任务,应该为不同网络中的节点学习可转移的特征。为此,我们提出了一种新颖的跨网络深度网络嵌入(CDNE)模型,将域适应纳入深度网络嵌入中,以便学习具有标签判别性和网络不变性的节点向量表示。一方面,CDNE利用网络结构来捕获网络内节点之间的邻近性,通过将连接更紧密的节点映射为具有更相似的潜在向量表示。另一方面,通过使跨网络的相同标记节点具有对齐的潜在向量表示,利用节点属性和标签来捕获不同网络中节点之间的邻近性。我们进行了大量实验,结果表明所提出的CDNE模型在跨网络节点分类方面显著优于当前最先进的网络嵌入算法。