Wang Chang-Dong, Shi Wei, Huang Ling, Lin Kun-Yu, Huang Dong, Yu Philip S
IEEE Trans Cybern. 2022 Jul;52(7):5908-5922. doi: 10.1109/TCYB.2020.3035066. Epub 2022 Jul 4.
Network embedding aims to learn the low-dimensional node representations for networks, which has attracted an increasing amount of attention in recent years. Most existing efforts in this field attempt to embed the network based on node similarity, which generally relies on edge existence statistics of the network. Instead of relying on the global edge existence statistics for every node pair, in this article, we utilize the information between a pair of nodes in a local way and propose a model, called node pair information preserving network embedding (NINE), based on adversarial networks. The main idea lies in preserving the node pair information (NI) by means of adversarial networks. The architecture of the proposed NINE model consists of three main components, namely: 1) NI embedder; 2) NI generator; and 3) NI discriminator. In the NI embedder, to avoid the complicated similarity calculation for a pair of nodes, the original NI vector calculated from the direct neighbor information of the two nodes is adopted as features, and the edge existence information is taken as labels to learn the embedded NI vector in a supervised learning manner. The second component is the NI generator, which takes the original node representation vectors of a node pair as input and outputs the generated NI vector. In order to make the generated NI vector follow the same distribution of the corresponding embedded NI vector, the generative adversarial network (GAN) is adopted, resulting in the third component, called the NI discriminator. Extensive experiments are conducted on seven real-world datasets in three downstream tasks, namely: 1) network reconstruction; 2) link prediction; and 3) node classification. Comparison results with seven state-of-the-art models demonstrate the effectiveness, efficiency, and rationality of our model.
网络嵌入旨在学习网络的低维节点表示,近年来受到了越来越多的关注。该领域现有的大多数工作都试图基于节点相似性来嵌入网络,这通常依赖于网络的边存在统计信息。在本文中,我们不是依赖于每个节点对的全局边存在统计信息,而是以局部方式利用一对节点之间的信息,并基于对抗网络提出了一种名为节点对信息保留网络嵌入(NINE)的模型。主要思想在于通过对抗网络保留节点对信息(NI)。所提出的NINE模型的架构由三个主要组件组成,即:1)NI嵌入器;2)NI生成器;3)NI判别器。在NI嵌入器中,为了避免对一对节点进行复杂的相似性计算,采用从两个节点的直接邻居信息计算得到的原始NI向量作为特征,并将边存在信息作为标签,以监督学习的方式学习嵌入的NI向量。第二个组件是NI生成器,它将节点对的原始节点表示向量作为输入,并输出生成的NI向量。为了使生成的NI向量遵循相应嵌入NI向量的相同分布,采用了生成对抗网络(GAN),从而产生了第三个组件,称为NI判别器。我们在三个下游任务中的七个真实世界数据集上进行了广泛的实验,即:1)网络重建;2)链接预测;3)节点分类。与七个最先进模型的比较结果证明了我们模型的有效性、效率和合理性。