Suppr超能文献

高通量代谢条形码技术研究原生生物十年的展望。

Perspectives from Ten Years of Protist Studies by High-Throughput Metabarcoding.

机构信息

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.

Department of Marine Sciences, University of Connecticut, Groton, CT, USA.

出版信息

J Eukaryot Microbiol. 2020 Sep;67(5):612-622. doi: 10.1111/jeu.12813. Epub 2020 Jul 2.

Abstract

During the last decade, high-throughput metabarcoding became routine for analyzing protistan diversity and distributions in nature. Amid a multitude of exciting findings, scientists have also identified and addressed technical and biological limitations, although problems still exist for inference of meaningful taxonomic and ecological knowledge based on short DNA sequences. Given the extensive use of this approach, it is critical to settle our understanding on its strengths and weaknesses and to synthesize up-to-date methodological and conceptual trends. This article summarizes key scientific and technical findings, and identifies current and future directions in protist research that uses metabarcoding.

摘要

在过去的十年中,高通量代谢条形码技术已成为分析自然中原生生物多样性和分布的常规手段。在众多令人兴奋的发现中,科学家们也已经确定并解决了技术和生物学方面的限制,尽管基于短 DNA 序列推断有意义的分类学和生态学知识仍然存在问题。鉴于这种方法的广泛应用,解决我们对其优缺点的理解以及综合最新的方法学和概念趋势至关重要。本文总结了使用代谢条形码进行原生生物研究的关键科学和技术发现,并确定了当前和未来的研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验