Wang Zhentao, Su Ying, Lin Shi-Zeng, Batista Cristian D
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA.
Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2020 May 22;124(20):207201. doi: 10.1103/PhysRevLett.124.207201.
We consider a C_{6} invariant lattice of magnetic moments coupled via a Kondo exchange J with a 2D electron gas (2DEG). The effective Ruderman-Kittel-Kasuya-Yosida interaction between the moments stabilizes a magnetic skyrmion crystal in the presence of magnetic field and easy-axis anisotropy. An attractive aspect of this mechanism is that the magnitude of the magnetic ordering wave vectors, Q_{ν} (ν=1, 2, 3), is dictated by the Fermi wave number k_{F}: |Q_{ν}|=2k_{F}. Consequently, the topological contribution to the Hall conductivity of the 2DEG becomes of the order of the quantized value, e^{2}/h, when J is comparable to the Fermi energy ε_{F}.
我们考虑一个通过近藤交换J与二维电子气(2DEG)耦合的磁矩的C₆不变晶格。在存在磁场和易轴各向异性的情况下,磁矩之间有效的Ruderman-Kittel-Kasuya-Yosida相互作用使磁斯格明子晶体稳定。该机制吸引人的一个方面是,磁有序波矢Qₙ(n = 1, 2, 3)的大小由费米波矢k_F决定:|Qₙ| = 2k_F。因此,当J与费米能ε_F可比时,二维电子气对霍尔电导率的拓扑贡献达到量子化值e²/h的量级。