Wang Huan-Wen, Fu Bo, Shen Shun-Qing
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Phys Rev Lett. 2020 May 22;124(20):206603. doi: 10.1103/PhysRevLett.124.206603.
Quantum transport in magnetic topological insulators reveals a strong interplay between magnetism and topology of electronic band structures. A recent experiment on magnetically doped topological insulator Bi_{2}Se_{3} thin films showed the anomalous temperature dependence of the magnetoconductivity while their field dependence presents a clear signature of weak antilocalization [Tkac et al., Phys. Rev. Lett. 123, 036406 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.036406]. Here, we demonstrate that the tiny mass of the surface electrons induced by the bulk magnetization leads to a temperature-dependent correction to the π Berry phase and generates a decoherence mechanism to the phase coherence length of the surface electrons. As a consequence, the quantum correction to conductivity can exhibit nonmonotonic behavior by decreasing the temperature. This effect is attributed to the close relation of the Berry phase and quantum interference of the topological surface electrons in quantum topological materials.
磁性拓扑绝缘体中的量子输运揭示了磁性与电子能带结构拓扑之间的强烈相互作用。最近一项关于磁性掺杂拓扑绝缘体Bi₂Se₃薄膜的实验表明,磁导率具有反常的温度依赖性,而其场依赖性则呈现出弱反局域化的明显特征 [Tkac等人,《物理评论快报》123, 036406 (2019年);PRLTAO0031 - 9007;10.1103/PhysRevLett.123.036406]。在此,我们证明,由体磁化诱导的表面电子的微小质量导致对π Berry相的温度依赖性修正,并产生一种使表面电子相位相干长度退相干的机制。因此,电导率的量子修正可以通过降低温度呈现非单调行为。这种效应归因于量子拓扑材料中拓扑表面电子的Berry相和量子干涉之间的密切关系。