Suppr超能文献

过氧单铁类反应高效降解水中氟氧氟沙星:海泡石负载双金属 Fe-Cu 的复合材料。

Efficient fenton-like degradation of ofloxacin over bimetallic Fe-Cu@Sepiolite composite.

机构信息

Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.

Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, PR China.

出版信息

Chemosphere. 2020 Oct;257:127209. doi: 10.1016/j.chemosphere.2020.127209. Epub 2020 May 27.

Abstract

An effective method for increasing the utilization efficiency of active components in heterogeneous Fenton-like catalysts was provided. 1.5 at.% Fe-Cu bimetal on 1D sepiolite (Sep) (D-FeCu@Sep) with high dispersion and reduced chemical valence was prepared via complexation-carbonization process of glutathione. 93% of ofloxacin (OFX, a typical antibiotic of emerging concern) was degraded over D-FeCu@Sep without any extra energy input at the optimum conditions (100 mL 10 mg/L OFX, pH 5.0, 3.0 g/L catalyst and 0.03 M HO), which was enhanced by 2.3, 3.0 and 1.7 times compared with aggregated Fe-Cu on Sep (A-FeCu@Sep), monometallic Fe on Sep (D-Fe@Sep) and Fe-Cu on blocky Celite (D-FeCu@Celite), respectively. Moreover, it exhibited an excellent performance at a wide working pH range from acidic to neutral conditions (pH 3.2-7.2) with a satisfied stability. Based on the characterizations of X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H-TPR) and electrochemical impedance spectroscopy (EIS), the proposed complexation-carbonization process of glutathione played an important role in the good Fenton performance of D-FeCu@Sep. The complexation of Fe and Cu ion by glutathione favors the high dispersion of Fe-Cu active component, afterward the reduced chemical valence results from carbonization process of glutathione. Moreover, the 1D nanofibrous structure of D-FeCu@Sep could greatly increase the surface electron transfer efficiency compared with D-FeCu@Celite. This study provides a method alternative to the heterogeneous Fenton chemistry by increasing the utilization efficiency of active components.

摘要

提供了一种提高非均相类芬顿催化剂中活性成分利用率的有效方法。通过谷胱甘肽的络合碳化过程,制备了在一维海泡石(Sep)上具有高分散性和降低化学价态的 1.5at%Fe-Cu 双金属(D-FeCu@Sep)。在最佳条件下(100mL10mg/L 的 OFX、pH5.0、3.0g/L 催化剂和 0.03M HO),无需额外能量输入,即可降解 93%的氧氟沙星(OFX,一种典型的新兴关注抗生素),与在 Sep 上聚集的 Fe-Cu(A-FeCu@Sep)、在 Sep 上的单金属 Fe(D-Fe@Sep)和在块状 Celite 上的 Fe-Cu(D-FeCu@Celite)相比,分别提高了 2.3、3.0 和 1.7 倍。此外,它在从酸性到中性条件(pH3.2-7.2)的较宽工作 pH 范围内表现出优异的性能,并且具有令人满意的稳定性。基于 X 射线光电子能谱(XPS)、电感耦合等离子体质谱(ICP-MS)、透射电子显微镜(TEM)、氢程序升温还原(H-TPR)和电化学阻抗谱(EIS)的表征,谷胱甘肽的络合碳化过程在 D-FeCu@Sep 的良好芬顿性能中发挥了重要作用。谷胱甘肽与 Fe 和 Cu 离子的络合有利于 Fe-Cu 活性成分的高分散性,随后碳化过程导致化学价态降低。此外,与 D-FeCu@Celite 相比,D-FeCu@Sep 的一维纳米纤维结构可以大大提高表面电子转移效率。本研究通过提高活性成分的利用率,为非均相芬顿化学提供了一种替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验