Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, PR China.
Chemosphere. 2020 Oct;257:127209. doi: 10.1016/j.chemosphere.2020.127209. Epub 2020 May 27.
An effective method for increasing the utilization efficiency of active components in heterogeneous Fenton-like catalysts was provided. 1.5 at.% Fe-Cu bimetal on 1D sepiolite (Sep) (D-FeCu@Sep) with high dispersion and reduced chemical valence was prepared via complexation-carbonization process of glutathione. 93% of ofloxacin (OFX, a typical antibiotic of emerging concern) was degraded over D-FeCu@Sep without any extra energy input at the optimum conditions (100 mL 10 mg/L OFX, pH 5.0, 3.0 g/L catalyst and 0.03 M HO), which was enhanced by 2.3, 3.0 and 1.7 times compared with aggregated Fe-Cu on Sep (A-FeCu@Sep), monometallic Fe on Sep (D-Fe@Sep) and Fe-Cu on blocky Celite (D-FeCu@Celite), respectively. Moreover, it exhibited an excellent performance at a wide working pH range from acidic to neutral conditions (pH 3.2-7.2) with a satisfied stability. Based on the characterizations of X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H-TPR) and electrochemical impedance spectroscopy (EIS), the proposed complexation-carbonization process of glutathione played an important role in the good Fenton performance of D-FeCu@Sep. The complexation of Fe and Cu ion by glutathione favors the high dispersion of Fe-Cu active component, afterward the reduced chemical valence results from carbonization process of glutathione. Moreover, the 1D nanofibrous structure of D-FeCu@Sep could greatly increase the surface electron transfer efficiency compared with D-FeCu@Celite. This study provides a method alternative to the heterogeneous Fenton chemistry by increasing the utilization efficiency of active components.
提供了一种提高非均相类芬顿催化剂中活性成分利用率的有效方法。通过谷胱甘肽的络合碳化过程,制备了在一维海泡石(Sep)上具有高分散性和降低化学价态的 1.5at%Fe-Cu 双金属(D-FeCu@Sep)。在最佳条件下(100mL10mg/L 的 OFX、pH5.0、3.0g/L 催化剂和 0.03M HO),无需额外能量输入,即可降解 93%的氧氟沙星(OFX,一种典型的新兴关注抗生素),与在 Sep 上聚集的 Fe-Cu(A-FeCu@Sep)、在 Sep 上的单金属 Fe(D-Fe@Sep)和在块状 Celite 上的 Fe-Cu(D-FeCu@Celite)相比,分别提高了 2.3、3.0 和 1.7 倍。此外,它在从酸性到中性条件(pH3.2-7.2)的较宽工作 pH 范围内表现出优异的性能,并且具有令人满意的稳定性。基于 X 射线光电子能谱(XPS)、电感耦合等离子体质谱(ICP-MS)、透射电子显微镜(TEM)、氢程序升温还原(H-TPR)和电化学阻抗谱(EIS)的表征,谷胱甘肽的络合碳化过程在 D-FeCu@Sep 的良好芬顿性能中发挥了重要作用。谷胱甘肽与 Fe 和 Cu 离子的络合有利于 Fe-Cu 活性成分的高分散性,随后碳化过程导致化学价态降低。此外,与 D-FeCu@Celite 相比,D-FeCu@Sep 的一维纳米纤维结构可以大大提高表面电子转移效率。本研究通过提高活性成分的利用率,为非均相芬顿化学提供了一种替代方法。