Zhao Lele, Murrieta María F, Padilla José A, Lanzalaco Sonia, Cabot Pere L, Sirés Ignasi
Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Departament d'Enginyeria Mecànica, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain.
Sci Total Environ. 2024 Nov 25;953:176110. doi: 10.1016/j.scitotenv.2024.176110. Epub 2024 Sep 10.
A bimetallic FeCu/NC core-shell catalyst, consisting in nanoparticles where zero-valent Fe and Cu atoms, slightly oxidized on their surface, are encapsulated by carbon has been successfully prepared by modifying the synthesis route of MIL(Fe)-88B. FeCu/NC possessed well-balanced textural and electrochemical properties. According to voltammetric responses, in-situ Fe(III) reduction to Fe(II) by low-valent Cu was feasible, whereas the high double-layer capacitance confirmed the presence of a great number of electroactive sites that was essential for continuous HO activation to OH via Fenton's reaction. Electrochemical impedance and distribution of relaxation times (DRT) analysis informed about the strong leaching resistance of FeCu/NC. To validate the promising features of this catalyst, the advanced oxidation of the antihypertensive lisinopril (LSN) was investigated for the first time. The heterogeneous electro-Fenton (HEF) treatment of 16.1 mg L LSN solutions was carried out in a DSA/air-diffusion cell. At pH 3, complete degradation was achieved within 6 min using only 0.05 g L FeCu/NC; at near-neutral pH, 100 % removal was also feasible even in actual urban wastewater, requiring 60-75 min. The FeCu/NC catalyst demonstrated high stability, still maintaining 86.5 % of degradation efficiency after 5 cycles and undergoing low iron leaching. It outperformed the monometallic (Fe/NC and Cu/NC) catalysts, which is explained by the Cu(0)/Cu(I)-catalyzed Fe(II) regeneration mechanism that maintains the Fenton's cycle. LC-MS/MS analysis allowed the identification of two main primary LSN by-products. It can then be concluded that the FeCu/NC-based HEF process merits to be further scaled up for wastewater treatment.
通过改进MIL(Fe)-88B的合成路线,成功制备了一种双金属FeCu/NC核壳催化剂,该催化剂由纳米颗粒组成,其中零价铁和铜原子在其表面略有氧化,被碳包裹。FeCu/NC具有良好平衡的结构和电化学性能。根据伏安响应,低价铜将原位Fe(III)还原为Fe(II)是可行的,而高双层电容证实存在大量电活性位点,这对于通过芬顿反应将HO连续活化成OH至关重要。电化学阻抗和弛豫时间分布(DRT)分析表明FeCu/NC具有很强的抗浸出性。为了验证该催化剂的优异性能,首次研究了抗高血压药物赖诺普利(LSN)的高级氧化。在DSA/空气扩散池中对16.1 mg·L LSN溶液进行了非均相电芬顿(HEF)处理。在pH 3时,仅使用0.05 g·L FeCu/NC在6分钟内即可实现完全降解;在近中性pH下,即使在实际城市废水中,100%的去除率也是可行的,需要60-75分钟。FeCu/NC催化剂表现出高稳定性,在5个循环后仍保持86.5%的降解效率,且铁浸出率低。它优于单金属(Fe/NC和Cu/NC)催化剂,这可以用Cu(0)/Cu(I)催化的Fe(II)再生机制来解释,该机制维持了芬顿循环。LC-MS/MS分析确定了两种主要的初级LSN副产物。因此可以得出结论,基于FeCu/NC的HEF工艺值得进一步扩大规模用于废水处理。