Lyon Keenan, Preciado-Rivas María Rosa, Zamora-Ledezma Camilo, Despoja Vito, Mowbray Duncan John
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador.
J Phys Condens Matter. 2020 Jul 16;32(41). doi: 10.1088/1361-648X/ab99ea.
Understanding, optimizing, and controlling the optical absorption process, exciton gemination, and electron-hole separation and conduction in low dimensional systems is a fundamental problem in materials science. However, robust and efficient methods capable of modelling the optical absorbance of low dimensional macromolecular systems and providing physical insight into the processes involved have remained elusive. We employ a highly efficient linear combination of atomic orbitals (LCAOs) representation of the Kohn-Sham (KS) orbitals within time dependent density functional theory (TDDFT) in the reciprocal space () and frequency () domains, as implemented within our LCAO-TDDFT--code, applying eitherorthe derivative discontinuity correction of the exchange functional Δto the KS eigenenergies as a scissors operator. In so doing we are able to provide a semi-quantitative description of the photoabsorption cross section, conductivity, and dielectric function for prototypical 0D, 1D, 2D, and 3D systems within the optical limit (‖‖ → 0) as compared to both available measurements and from solving the Bethe-Salpeter equation with quasiparticleeigenvalues (-BSE). Specifically, we consider 0D fullerene (C), 1D metallic (10, 0) and semiconducting (10, 10) single-walled carbon nanotubes, 2D graphene (Gr) and phosphorene (Pn), and 3D rutile (R-TiO) and anatase (A-TiO). For each system, we also employ the spatially and energetically resolved electron-hole spectral density to provide direct physical insight into the nature of their optical excitations. These results demonstrate the reliability, applicability, efficiency, and robustness of our LCAO-TDDFT--code, and open the pathway to the computational design of macromolecular systems for optoelectronic, photovoltaic, and photocatalytic applications.
理解、优化和控制低维系统中的光吸收过程、激子复合以及电子 - 空穴分离与传导是材料科学中的一个基本问题。然而,能够对低维大分子系统的光吸收进行建模并深入了解其中所涉及过程的强大而有效的方法仍然难以捉摸。我们在倒易空间()和频率()域中,采用含时密度泛函理论(TDDFT)内的Kohn - Sham(KS)轨道的高效原子轨道线性组合(LCAOs)表示,如我们的LCAO - TDDFT - 代码中所实现的那样,将交换泛函Δ的导数不连续性校正作为剪刀算符应用于KS本征能量。通过这样做,与现有的测量结果以及通过求解具有准粒子本征值的Bethe - Salpeter方程(-BSE)相比,我们能够在光学极限(‖‖→0)下对典型的0D、1D、2D和3D系统的光吸收截面、电导率和介电函数提供半定量描述。具体而言,我们考虑0D富勒烯(C)、1D金属性(10, 0)和半导体性(10, 10)单壁碳纳米管、2D石墨烯(Gr)和磷烯(Pn)以及3D金红石(R - TiO)和锐钛矿(A - TiO)。对于每个系统,我们还利用空间和能量分辨的电子 - 空穴光谱密度,以直接深入了解其光学激发的本质。这些结果证明了我们的LCAO - TDDFT - 代码的可靠性、适用性、效率和稳健性,并为用于光电子、光伏和光催化应用的大分子系统的计算设计开辟了道路。