Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, Australia.
Sydney Medical School, University of Sydney, Sydney, Australia.
Sci Rep. 2020 Jun 5;10(1):9262. doi: 10.1038/s41598-020-66266-5.
Charcot-Marie-Tooth (CMT) is a group of inherited diseases clinically and genetically heterogenous, characterised by length dependent degeneration of axons of the peripheral nervous system. A missense mutation (p.R158H) in the pyruvate dehydrogenase kinase 3 gene (PDK3) has been identified as the genetic cause for an X-linked form of CMT (CMTX6) in two unrelated families. PDK3 is one of four PDK isoenzymes that regulate the activity of the pyruvate dehydrogenase complex (PDC). The balance between kinases (PDKs) and phosphatases (PDPs) determines the extend of oxidative decarboxylation of pyruvate to generate acetyl CoA, critically linking glycolysis and the energy producing Krebs cycle. We had shown the p.R158H mutation causes hyperactivity of PDK3 and CMTX6 fibroblasts show hyperphosphorylation of PDC, leading to reduced PDC activity and ATP production. In this manuscript we have generated induced pluripotent stem cells (iPSCs) by re-programming CMTX6 fibroblasts (iPSC). We also have engineered an isogenic control (iPSC) and demonstrated that genetic correction of the p.R158H mutation reverses the CMTX6 phenotype. Patient-derived motor neurons (MN) show increased phosphorylation of the PDC, energy metabolism defects and mitochondrial abnormalities, including reduced velocity of trafficking mitochondria in the affected axons. Treatment of the MN with a PDK inhibitor reverses PDC hyperphosphorylation and the associated functional deficits founds in the patient motor neurons, demonstrating that the MN and MN motor neurons provide an excellent neuronal system for compound screening approaches to identify drugs for the treatment of CMTX6.
腓骨肌萎缩症(CMT)是一组具有临床和遗传异质性的遗传性疾病,其特征是周围神经系统轴突的长度依赖性退化。在两个不相关的家族中,丙酮酸脱氢酶激酶 3 基因(PDK3)中的错义突变(p.R158H)被确定为 X 连锁腓骨肌萎缩症(CMTX6)的遗传原因。PDK3 是调节丙酮酸脱氢酶复合物(PDC)活性的四种 PDK 同工酶之一。激酶(PDKs)和磷酸酶(PDPs)之间的平衡决定了丙酮酸进行氧化脱羧生成乙酰辅酶 A 的程度,这对糖酵解和产生能量的三羧酸循环至关重要。我们已经表明,p.R158H 突变导致 PDK3 过度活跃,CMTX6 成纤维细胞显示 PDC 过度磷酸化,导致 PDC 活性和 ATP 产生减少。在本手稿中,我们通过重新编程 CMTX6 成纤维细胞(iPSC)生成诱导多能干细胞(iPSC)。我们还设计了一个同基因对照(iPSC),并证明了 p.R158H 突变的基因纠正逆转了 CMTX6 表型。患者来源的运动神经元(MN)显示 PDC 磷酸化增加、能量代谢缺陷和线粒体异常,包括受影响轴突中转运线粒体的速度降低。用 PDK 抑制剂治疗 MN 可逆转 PDC 过度磷酸化和患者运动神经元中发现的相关功能缺陷,表明 MN 和 MN 运动神经元为化合物筛选方法提供了一个极好的神经元系统,以确定治疗 CMTX6 的药物。