Sainio Markus T, Rasila Tiina, Molchanova Svetlana M, Järvilehto Julius, Torregrosa-Muñumer Rubén, Harjuhaahto Sandra, Pennonen Jana, Huber Nadine, Herukka Sanna-Kaisa, Haapasalo Annakaisa, Zetterberg Henrik, Taira Tomi, Palmio Johanna, Ylikallio Emil, Tyynismaa Henna
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
Front Cell Dev Biol. 2022 Feb 14;9:820105. doi: 10.3389/fcell.2021.820105. eCollection 2021.
Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene () are among the causes of Charcot-Marie-Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.
神经丝轻链(NFL)是构成多聚体神经元特异性中间丝(神经丝)的蛋白质之一,神经丝填充轴突细胞质,确定轴突直径生长,并提供结构支持。神经丝轻链基因()中的显性错义突变和隐性无义突变是夏科-马里-图斯(CMT)神经病的病因之一,CMT神经病会影响轴突最长的周围神经。我们之前证明,该基因中一个导致神经病的纯合无义突变会导致患者特异性神经元中缺乏NFL。为了了解致病机制,我们在此研究了从诱导多能干细胞(iPSC)分化而来的人类运动神经元中NFL缺失的功能影响。我们使用基因组编辑技术生成了NFL基因敲除细胞,并将其与患者特异性无义突变体和同基因对照进行比较。缺乏NFL的iPSC能有效分化为运动神经元,这些运动神经元在机械性轴突切断后轴突生长和再生正常,并且含有神经丝。电生理分析表明,没有NFL的运动神经元能够产生自发和诱发动作电位,其特征与对照相似。然而,我们发现,在没有NFL的情况下,人类运动神经元:1)轴突直径减小;2)微小兴奋性突触后电流(mEPSC)的幅度降低;3)神经丝重链(NFH)水平降低,未观察到其他丝亚基的代偿性增加;4)线粒体的运动增加,溶酶体的运动在较小程度上增加。我们的研究结果阐述了NFL在人类运动神经元中的功能作用。NFL不仅是一种构成神经丝并填充轴突细胞质的结构蛋白,而且我们的研究支持了NFL在调节突触传递和细胞器运输中的作用。为了挽救患者特异性无义突变运动神经元中的NFL缺陷,我们使用了三种药物,氨来呫诺、阿他芦醇(PTC-124)和庆大霉素,以诱导翻译通读或抑制无义介导的衰变。然而,这些药物未能将NFL蛋白的量增加到可检测水平,并且对iPSC衍生的运动神经元有毒性。