Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104.
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2110416119. doi: 10.1073/pnas.2110416119. Epub 2022 Aug 8.
Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy ( < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.
先前的研究表明,大脑皮层的功能网络(即功能拓扑)在个体间存在着很大的空间分布差异。然而,目前尚不清楚在年轻人的个体化网络拓扑中是否存在性别差异。在这里,我们利用一种先进的机器学习方法(稀疏正则化非负矩阵分解)来定义 693 名青年(年龄 8 至 23 岁)的个体化功能网络,这些青年是费城神经发育队列研究的一部分,接受了功能磁共振成像。使用支持向量机的多元模式分析根据功能拓扑以 82.9%的准确率(<0.0001)对参与者的性别进行分类。在分类参与者性别的过程中最有效的大脑区域属于联合网络,包括腹侧注意、默认模式和额顶叶网络。使用带惩罚样条的广义加性模型进行的大规模单变量分析提供了一致的结果。此外,艾伦人类大脑图谱的转录组数据显示,功能拓扑的多元模式中的性别差异与 X 染色体上基因的表达在空间上相关。这些结果强调了性作为生物变量在塑造功能拓扑中的作用。