Suppr超能文献

1998-2017 年中国人群 PM 暴露风险的时空变化及其决定因素:以京津冀地区为例。

Spatiotemporal variation and determinants of population's PM exposure risk in China, 1998-2017: a case study of the Beijing-Tianjin-Hebei region.

机构信息

School of Mathematics, South China University of Technology, 381 Wushan Road, Guangzhou, 510000, China.

School of Statistics, Shanxi University of Finance and Economics, 696 Wucheng Road, Taiyuan, 030006, China.

出版信息

Environ Sci Pollut Res Int. 2020 Sep;27(25):31767-31777. doi: 10.1007/s11356-020-09484-8. Epub 2020 Jun 5.

Abstract

PM pollution has emerged as a global human health risk. The best measure of its impact is a population's PM exposure (PPME), an index that simultaneously considers PM concentrations and population spatial density. The spatiotemporal variation of PPME over the Beijing-Tianjin-Hebei (BTH) region, which is the national capital region of China, was investigated using a Bayesian space-time model, and the influence patterns of the anthropic and geographical factors were identified using the GeoDetector model and Pearson correlation analysis. The spatial pattern of PPME maintained a stable structure over the BTH region's distinct terrain, which has been described as "high in the northwest, low in the southeast". The spatial difference of PPME intensified annually. An overall increase of 6.192 (95% CI 6.186, 6.203) ×10 μg/m ∙ persons/km per year occurred over the BTH region from 1998 to 2017. The evolution of PPME in the region can be described as "high value, high increase" and "low value, low increase", since human activities related to gross domestic product (GDP) and energy consumption (EC) were the main factors in its occurrence. GDP had the strongest explanatory power of 76% (P < 0.01), followed by EC and elevation (EL), which accounted for 61% (P < 0.01) and 40% (P < 0.01), respectively. There were four factors, proportion of secondary industry (PSI), normalized differential vegetation index (NDVI), relief amplitude (RA), and EL, associated negatively with PPME and four factors, GDP, EC, annual precipitation (AP), and annual average temperature (AAT), associated positively with PPME. Remarkably, the interaction of GDP and NDVI, which was 90%, had the greatest explanatory power for PPME ' s diffusion and impact on the BTH region.

摘要

PM 污染已成为全球人类健康的风险因素。衡量其影响的最佳指标是人群的 PM 暴露(PPME),这是一个同时考虑 PM 浓度和人口空间密度的指数。本研究采用贝叶斯时空模型,对京津冀(BTH)地区的 PM 暴露时空变化进行了研究,并利用地理探测器模型和 Pearson 相关分析,确定了人为因素和地理因素的影响模式。京津冀地区地形复杂,其 PM 暴露的空间格局保持稳定,呈现“西北高、东南低”的特征。京津冀地区 PM 暴露的空间差异逐年加剧。1998 年至 2017 年,京津冀地区的 PPME 整体呈上升趋势,每年增加 6.192(95%置信区间:6.186,6.203)×10μg/m∙人∙km。京津冀地区的 PPME 可以描述为“高值、高增长”和“低值、低增长”,这是由于与国内生产总值(GDP)和能源消耗(EC)相关的人类活动是其发生的主要因素。GDP 对 PM 暴露的解释能力最强,为 76%(P<0.01),其次是 EC 和海拔(EL),分别为 61%(P<0.01)和 40%(P<0.01)。有四个因素与 PPME 呈负相关,分别是第二产业比例(PSI)、归一化差异植被指数(NDVI)、地形起伏度(RA)和海拔(EL);有四个因素与 PPME 呈正相关,分别是 GDP、EC、年平均降水量(AP)和年平均气温(AAT)。值得注意的是,GDP 和 NDVI 的交互作用(90%)对京津冀地区 PM 暴露的扩散及其对该地区的影响具有最大的解释能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验