UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, CA, 95064, USA.
Exp Cell Res. 2020 Sep 15;394(2):112127. doi: 10.1016/j.yexcr.2020.112127. Epub 2020 Jun 3.
We are entering into an exciting era of genomics where truly complete, high-quality assemblies of human chromosomes are available end-to-end, or from 'telomere-to-telomere' (T2T). This technological advance offers a new opportunity to include endogenous human centromeric regions in high-resolution, sequence-based studies. These emerging reference maps are expected to reveal a new functional landscape in the human genome, where centromere proteins, transcriptional regulation, and spatial organization can be examined with base-level resolution across different stages of development and disease. Such studies will depend on innovative assembly methods of extremely long tandem repeats (ETRs), or satellite DNAs, paired with the development of new, orthogonal validation methods to ensure accuracy and completeness. This review reflects the progress in centromere genomics, credited by recent advancements in long-read sequencing and assembly methods. In doing so, I will discuss the challenges that remain and the promise for a new period of scientific discovery for satellite DNA biology and centromere function.
我们正步入一个激动人心的基因组学时代,人类染色体的完整、高质量组装端到端或从“端粒到端粒”(T2T)都已实现。这项技术进步为将内源性人类着丝粒区域纳入高分辨率、基于序列的研究提供了新的机会。这些新兴的参考图谱有望揭示人类基因组中的一个新的功能景观,其中着丝粒蛋白、转录调控和空间组织可以在不同的发育和疾病阶段以碱基分辨率进行检查。这些研究将取决于极度长串联重复(ETR)或卫星 DNA 的创新组装方法,以及开发新的正交验证方法来确保准确性和完整性。这篇综述反映了近年来长读测序和组装方法的进展对着丝粒基因组学的贡献。在这样做的过程中,我将讨论仍然存在的挑战以及卫星 DNA 生物学和着丝粒功能新的科学发现时期的前景。