Jacobs Bas, Molenaar Jaap, Deinum Eva E
Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
J Theor Biol. 2020 Oct 7;502:110351. doi: 10.1016/j.jtbi.2020.110351. Epub 2020 Jun 4.
In plant vascular tissue development, different cell wall patterns are formed, offering different mechanical properties optimised for different growth stages. Critical in these patterning processes are Rho of Plants (ROP) proteins, a class of evolutionarily conserved small GTPase proteins responsible for local membrane domain formation in many organisms. While te spotted metaxylem pattern can easily be understood as a result of a Turing-style reaction-diffusion mechanism, it remains an open question how the consistent orientation of evenly spaced bands and spirals as found in protoxylem is achieved. We hypothesise that this orientation results from an interaction between ROPs and an array of transversely oriented cortical microtubules that acts as a directional diffusion barrier. Here, we explore this hypothesis using partial differential equation models with anisotropic ROP diffusion and show that a horizontal microtubule array acting as a vertical diffusion barrier to active ROP can yield a horizontally banded ROP pattern. We then study the underlying mechanism in more detail, finding that it can only orient curved pattern features but not straight lines. This implies that, once formed, banded and spiral patterns cannot be reoriented by this mechanism. Finally, we observe that ROPs and microtubules together only form ultimately static patterns if the interaction is implemented with sufficient biological realism.
在植物维管组织发育过程中,会形成不同的细胞壁模式,为不同生长阶段提供优化的不同机械性能。植物Rho(ROP)蛋白在这些模式形成过程中至关重要,这是一类在进化上保守的小GTPase蛋白,负责许多生物体中局部膜结构域的形成。虽然散生后生木质部模式很容易被理解为图灵式反应扩散机制的结果,但原木质部中均匀间隔的条带和螺旋的一致取向是如何实现的,仍然是一个悬而未决的问题。我们假设这种取向是由ROP与一系列横向排列的皮层微管之间的相互作用导致的,这些微管充当定向扩散屏障。在这里,我们使用具有各向异性ROP扩散的偏微分方程模型来探索这一假设,并表明作为活性ROP垂直扩散屏障的水平微管阵列可以产生水平带状的ROP模式。然后,我们更详细地研究了潜在机制,发现它只能使弯曲的模式特征定向,而不能使直线定向。这意味着,一旦形成,带状和螺旋模式不能通过这种机制重新定向。最后,我们观察到,如果以足够的生物学真实性来实现这种相互作用,ROP和微管一起只会形成最终的静态模式。