Suppr超能文献

长期的微管单细胞成像与模拟揭示了原生木质部发育过程中细胞壁图案形成背后的原理。

Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development.

作者信息

Schneider René, Klooster Kris Van't, Picard Kelsey L, van der Gucht Jasper, Demura Taku, Janson Marcel, Sampathkumar Arun, Deinum Eva E, Ketelaar Tijs, Persson Staffan

机构信息

School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.

Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.

出版信息

Nat Commun. 2021 Jan 28;12(1):669. doi: 10.1038/s41467-021-20894-1.

Abstract

Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning.

摘要

植物是地球上最高的生物体,这一特性由植物维管系统中负责溶质运输的木质部导管维持。木质部导管由以复杂模式组装的坚固细胞壁支撑。皮层微管引导细胞壁沉积,并且在木质部细胞发育过程中需要迅速重新组织。在这里,我们对经历原生木质部转分化的单个拟南芥细胞进行长期活细胞成像,结果产生螺旋壁模式,以了解微管的重新组织。我们发现这种重新组织需要在带间间隙中局部微管去稳定化。通过微管模拟,我们在计算机上重现了这一过程,并预测微管成核的时空控制对于模式形成至关重要,我们在体内证实了这一点。通过结合模拟和活细胞成像,我们进一步解释了缺乏木质部壁且能切断微管的katanin如何促进微管和壁的模式形成。因此,通过结合定量显微镜和建模,我们设计了一个框架来理解微管重新组织如何支持壁的模式形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bf0/7843992/4d0cfc55858a/41467_2021_20894_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验