Víšová Ivana, Vrabcová Markéta, Forinová Michala, Zhigunová Yulia, Mironov Vasilii, Houska Milan, Bittrich Eva, Eichhorn Klaus-Jochen, Hashim Hisham, Schovánek Petr, Dejneka Alexandr, Vaisocherová-Lísalová Hana
FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic.
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden 01069, Germany.
Langmuir. 2020 Jul 28;36(29):8485-8493. doi: 10.1021/acs.langmuir.0c00996. Epub 2020 Jun 18.
Polymer brushes not only represent emerging surface platforms for numerous bioanalytical and biological applications but also create advanced surface-tethered systems to mimic real-life biological processes. In particular, zwitterionic and nonionic polymer brushes have been intensively studied because of their extraordinary resistance to nonspecific adsorption of biomolecules (antifouling characteristics) as well as the ability to be functionalized with bioactive molecules. However, the relation between antifouling behavior in real-world biological media and structural changes of polymer brushes induced by surface preconditioning in different environments remains unexplored. In this work, we use multiple methods to study the structural properties of numerous brushes under variable ionic concentrations and determine the impact of these changes on resistance to fouling from undiluted blood plasma. We describe different mechanisms of swelling, depending on both the polymer brush coating properties and the environmental conditions that affect changes in both hydration levels and thickness. Using both fluorescent and surface plasmon resonance methods, we found that the antifouling behavior of these brushes is strongly dependent on the aforementioned structural changes. Moreover, preconditioning of the brush coatings (incubation at a variable salt concentration or drying) prior to biomolecule interaction may significantly improve the antifouling performance. These results suggest a new simple approach to improve the antifouling behavior of polymer brushes. In addition, the results herein enhance the understanding for improved design of antifouling and bioresponsive brushes employed in biosensor and biomimetic applications.
聚合物刷不仅是众多生物分析和生物学应用中新兴的表面平台,还构建了先进的表面 tethered 系统来模拟现实生活中的生物过程。特别是,两性离子和非离子聚合物刷因其对生物分子非特异性吸附的非凡抗性(抗污特性)以及用生物活性分子进行功能化的能力而受到深入研究。然而,在不同环境中表面预处理引起的聚合物刷结构变化与实际生物介质中的抗污行为之间的关系仍未被探索。在这项工作中,我们使用多种方法研究了在可变离子浓度下众多刷的结构特性,并确定了这些变化对来自未稀释血浆的抗污性的影响。我们描述了不同的溶胀机制,这取决于聚合物刷涂层特性以及影响水合水平和厚度变化的环境条件。使用荧光和表面等离子体共振方法,我们发现这些刷的抗污行为强烈依赖于上述结构变化。此外,在生物分子相互作用之前对刷涂层进行预处理(在可变盐浓度下孵育或干燥)可能会显著提高抗污性能。这些结果提出了一种改善聚合物刷抗污行为的新的简单方法。此外,本文的结果增强了对用于生物传感器和仿生应用的抗污和生物响应刷改进设计的理解。