Suppr超能文献

基于深度支持向量机的皮肤电活动应激状态识别

Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity.

机构信息

Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete Spain.

Instituto de Investigación en Informática de Albacete, 02071 Albacete, Spain.

出版信息

Int J Neural Syst. 2020 Jul;30(7):2050031. doi: 10.1142/S0129065720500318. Epub 2020 Jun 5.

Abstract

Early detection of stress condition is beneficial to prevent long-term mental illness like depression and anxiety. This paper introduces an accurate identification of stress/calm condition from electrodermal activity (EDA) signals. The acquisition of EDA signals from a commercial wearable as well as their storage and processing are presented. Several time-domain, frequency-domain and morphological features are extracted over the skin conductance response of the EDA signals. Afterwards, a classification is undergone by using several classical support vector machines (SVMs) and deep support vector machines (D-SVMs). In addition, several binary classifiers are also compared with SVMs in the stress/calm identification task. Moreover, a series of video clips evoking calm and stress conditions have been viewed by 147 volunteers in order to validate the classification results. The highest F1-score obtained for SVMs and D-SVMs are 83% and 92%, respectively. These results demonstrate that not only classical SVMs are appropriate for classification of biomarker signals, but D-SVMs are very competitive in comparison to other classification techniques. In addition, the results have enabled drawing useful considerations for the future use of SVMs and D-SVMs in the specific case of stress/calm identification.

摘要

早期发现压力状况有利于预防长期的精神疾病,如抑郁症和焦虑症。本文介绍了一种从皮肤电活动(EDA)信号中准确识别压力/平静状态的方法。介绍了从商用可穿戴设备获取 EDA 信号以及存储和处理 EDA 信号的方法。从 EDA 信号的皮肤电导反应中提取了几个时域、频域和形态特征。然后,使用几种经典的支持向量机(SVM)和深度支持向量机(D-SVM)进行分类。此外,还将几种二进制分类器与 SVM 在压力/平静识别任务中的性能进行了比较。此外,为了验证分类结果,有 147 名志愿者观看了一系列引起平静和压力的视频片段。SVM 和 D-SVM 获得的最高 F1 得分为 83%和 92%。这些结果表明,不仅经典的 SVM 适用于生物标志物信号的分类,而且 D-SVM 与其他分类技术相比具有很强的竞争力。此外,这些结果为未来在压力/平静识别的特定情况下使用 SVM 和 D-SVM 提供了有用的考虑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验