Robinson James C
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK.
Philos Trans A Math Phys Eng Sci. 2020 Jun 26;378(2174):20190526. doi: 10.1098/rsta.2019.0526. Epub 2020 Jun 8.
There is currently no proof guaranteeing that, given a smooth initial condition, the three-dimensional Navier-Stokes equations have a unique solution that exists for all positive times. This paper reviews the key rigorous results concerning the existence and uniqueness of solutions for this model. In particular, the link between the regularity of solutions and their uniqueness is highlighted. This article is part of the theme issue 'Stokes at 200 (Part 1)'.
目前尚无证据能保证,在给定一个光滑的初始条件下,三维纳维 - 斯托克斯方程具有对所有正时间都存在的唯一解。本文回顾了关于该模型解的存在性和唯一性的关键严格结果。特别强调了解的正则性与其唯一性之间的联系。本文是主题特刊“斯托克斯200周年(第一部分)”的一部分。