Suppr超能文献

[人工智能的现状与未来展望:疾病动态分析的数学方法示例]

[Present and future perspectives of artificial intelligence: examples of mathematical approaches for analysis of disease dynamics].

作者信息

Aihara Kazuyuki

机构信息

The University of Tokyo.

出版信息

Rinsho Ketsueki. 2020;61(5):549-553. doi: 10.11406/rinketsu.61.549.

Abstract

Artificial intelligence (AI) has been applied widely in medicine. For example, deep neural network-based deep learning is particularly effective for pattern recognition in static medical images. Additionally, dynamic time series data are analysed ubiquitously in biology and medicine, as in the application of BCR-ABL International Scale time series data measured from CML patients treated with tyrosine-kinase inhibitors. Nonlinear data analyses, rather than conventional deep learning, can be more powerful for this type of dynamic disease information. Here, I introduce our mathematical approaches that are applicable for disease dynamics, such as dynamical network biomarkers (DNB) and randomly distributed embedding (RDE), as examples of nonlinear data analyses. I also discuss the availability of neuroinspired and neuromorphic hardware systems, which we are developing for potential use in next-generation AI.

摘要

人工智能(AI)已在医学中得到广泛应用。例如,基于深度神经网络的深度学习在静态医学图像的模式识别方面特别有效。此外,动态时间序列数据在生物学和医学中被广泛分析,如在对接受酪氨酸激酶抑制剂治疗的慢性粒细胞白血病(CML)患者测量的BCR-ABL国际量表时间序列数据的应用中。对于这类动态疾病信息,非线性数据分析而非传统的深度学习可能更具威力。在此,我介绍我们适用于疾病动态分析的数学方法,如动态网络生物标志物(DNB)和随机分布嵌入(RDE),作为非线性数据分析的示例。我还将讨论我们正在开发的、有望用于下一代人工智能的神经启发式和神经形态硬件系统的可用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验