Suppr超能文献

多图表方案用于检测疾病发病率的变化。

Multichart Schemes for Detecting Changes in Disease Incidence.

机构信息

School of Mathematical Sciences, Shanghai Jiao Tong University, 200240 Shanghai, China.

Department of Statistics, University for Development Studies, Navrongo, Ghana.

出版信息

Comput Math Methods Med. 2020 May 15;2020:7267801. doi: 10.1155/2020/7267801. eCollection 2020.

Abstract

Several methods have been proposed in open literatures for detecting changes in disease outbreak or incidence. Most of these methods are likelihood-based as well as the direct application of Shewhart, CUSUM and EWMA schemes. We use CUSUM, EWMA and EWMA-CUSUM multi-chart schemes to detect changes in disease incidence. Multi-chart is a combination of several single charts that detects changes in a process and have been shown to have elegant properties in the sense that they are fast in detecting changes in a process as well as being computationally less expensive. Simulation results show that the multi-CUSUM chart is faster than EWMA and EWMA-CUSUM multi-charts in detecting shifts in the rate parameter. A real illustration with health data is used to demonstrate the efficiency of the schemes.

摘要

已有文献提出了几种用于检测疾病爆发或发病率变化的方法。这些方法大多基于似然比,以及谢哈特(Shewhart)、CUSUM 和 EWMA 方案的直接应用。我们使用 CUSUM、EWMA 和 EWMA-CUSUM 多图方案来检测疾病发病率的变化。多图是将多个单图组合在一起,用于检测过程中的变化,并且已经证明它们具有优美的特性,即在检测过程中的变化时速度很快,并且计算成本较低。模拟结果表明,多 CUSUM 图在检测率参数变化方面比 EWMA 和 EWMA-CUSUM 多图更快。使用健康数据进行实际说明,以展示方案的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8033/7245694/34cce0987375/CMMM2020-7267801.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验