Haq Abdul, Khoo Michael B C
Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan.
School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia.
J Appl Stat. 2019 Nov 8;47(9):1652-1675. doi: 10.1080/02664763.2019.1688262. eCollection 2020.
The memory-type adaptive and non-adaptive control charts are among the best control charts for detecting small-to-moderate changes in the process parameter(s). In this paper, we propose the Crosier CUSUM (CCUSUM), EWMA, adaptive CCUSUM (ACCUSUM) and adaptive EWMA (AEWMA) charts for efficiently monitoring the changes in the covariance matrix of a multivariate normal process without subgrouping. Using extensive Monte Carlo simulations, the length characteristics of these control charts are computed. It turns out that the ACCUSUM and AEWMA charts perform uniformly and substantially better than the CCUSUM and EWMA charts when detecting a range of shift sizes in the covariance matrix. Moreover, the AEWMA chart outperforms the ACCUSUM chart. A real dataset is used to explain the implementation of the proposed control charts.
记忆型自适应和非自适应控制图是检测过程参数中小到中等变化的最佳控制图之一。在本文中,我们提出了Crosier累积和(CCUSUM)、指数加权移动平均(EWMA)、自适应CCUSUM(ACCUSUM)和自适应EWMA(AEWMA)控制图,用于在无分组的情况下有效监测多元正态过程协方差矩阵的变化。通过广泛的蒙特卡罗模拟,计算了这些控制图的长度特征。结果表明,在检测协方差矩阵中一系列的偏移量大小时,ACCUSUM和AEWMA控制图的表现始终且显著优于CCUSUM和EWMA控制图。此外,AEWMA控制图的性能优于ACCUSUM控制图。使用一个真实数据集来解释所提出控制图的实施过程。