Suppr超能文献

大型空气过滤器样本集中钚、镅和锶的分离方法。

Separation method for Pu, Am and Sr in large air filter sample sets.

作者信息

Salminen-Paatero Susanna, Paatero Jussi

机构信息

Department of Chemistry, Radiochemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland.

Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland.

出版信息

MethodsX. 2020 May 12;7:100910. doi: 10.1016/j.mex.2020.100910. eCollection 2020.

Abstract

A sequential separation method for Pu, Am, and Sr was applied for unusually large sample sets of air filters. The sample sets were combined weekly air filters covering sampling time from three months to five years, while in original method, the analyzed air filters had sampling time of only 1-3 days, containing significantly less organic and inorganic matrix and natural radionuclides. The separation method is based on ashing and wet-ashing, followed by column separations with extraction chromatography and anion exchange. Reference materials IAEA-447, IAEA-384, and NIST-SRM-4353A were analyzed with the modified separation method. IAEA-384 was representing best the composition and radionuclide level in the air filter samples.•Compared to the original method, sample ashing took considerably longer time (one day vs. several days).•High concentration of natural radionuclides in the large air filter sample sets interfered first the determination of Am and Sr, until an anion exchange step was adopted for removal of Bi and Po from Am and Sr fractions.•After modification, the method is suitable for separating artificial radionuclides Pu, Am, and Sr from large sample sets of air filters.

摘要

一种用于钚、镅和锶的顺序分离方法应用于异常大量的空气过滤器样本集。这些样本集是由覆盖三个月至五年采样时间的每周空气过滤器组合而成,而在原方法中,所分析的空气过滤器采样时间仅为1 - 3天,所含的有机和无机基质以及天然放射性核素明显较少。该分离方法基于灰化和湿灰化,随后通过萃取色谱和阴离子交换进行柱分离。使用改进后的分离方法对国际原子能机构 - 447、国际原子能机构 - 384和美国国家标准与技术研究院 - SRM - 4353A等参考物质进行了分析。国际原子能机构 - 384最能代表空气过滤器样本中的成分和放射性核素水平。

•与原方法相比,样品灰化所需时间长得多(一天对几天)。

•大型空气过滤器样本集中高浓度的天然放射性核素首先干扰了镅和锶的测定,直到采用阴离子交换步骤从镅和锶组分中去除铋和钋。

•改进后,该方法适用于从大型空气过滤器样本集中分离人工放射性核素钚、镅和锶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/296c/7264045/2c31603fd321/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验