School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Heredity (Edinb). 2020 Dec;125(6):386-395. doi: 10.1038/s41437-020-0326-8. Epub 2020 Jun 11.
Wheat has low levels of the micronutrients iron and zinc in the grain, which contributes to 2 billion people suffering from micronutrient deficiency globally. While wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which could improve micronutrient content in the human diet, without the sustainability issues and costs associated with conventional fortification. Although many studies have used quantitative trait loci mapping and genome-wide association to identify genetic loci to improve micronutrient contents, recent developments in genomics offer an opportunity to accelerate marker discovery and use gene-focussed approaches to engineer improved micronutrient content in wheat. The recent publication of a high-quality wheat genome sequence, alongside gene expression atlases, variation datasets and sequenced mutant populations, provides a foundation to identify genetic loci and genes controlling micronutrient content in wheat. We discuss how novel genomic resources can identify candidate genes for biofortification, integrating knowledge from other cereal crops, and how these genes can be tested using gene editing, transgenic and TILLING approaches. Finally, we highlight key challenges remaining to develop wheat cultivars with high levels of iron and zinc.
小麦中的铁和锌等微量营养素含量较低,全球有 20 亿人因此受到微量营养素缺乏的影响。虽然在加工过程中通常会对小麦粉进行强化,但生物强化是一种更有吸引力且更具可持续性的解决方案,它可以改善人类饮食中的微量营养素含量,而不会带来与传统强化相关的可持续性问题和成本。虽然许多研究已经使用数量性状位点作图和全基因组关联来鉴定遗传基因座以提高微量营养素含量,但基因组学的最新发展为加速标记物的发现和使用基因聚焦方法来工程改良小麦中的微量营养素含量提供了机会。高质量小麦基因组序列的最近发布,以及基因表达图谱、变异数据集和测序突变体群体,为鉴定控制小麦微量营养素含量的遗传基因座和基因提供了基础。我们讨论了如何利用新型基因组资源来鉴定生物强化的候选基因,整合来自其他谷类作物的知识,以及如何使用基因编辑、转基因和 TILLING 方法来测试这些基因。最后,我们强调了开发高铁和高锌小麦品种仍然存在的关键挑战。