一种用于选择和验证数字健康指标的数据驱动框架:神经感觉运动障碍中的用例
A data-driven framework for selecting and validating digital health metrics: use-case in neurological sensorimotor impairments.
作者信息
Kanzler Christoph M, Rinderknecht Mike D, Schwarz Anne, Lamers Ilse, Gagnon Cynthia, Held Jeremia P O, Feys Peter, Luft Andreas R, Gassert Roger, Lambercy Olivier
机构信息
Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
Division of Vascular Neurology and Rehabilitation, Department of Neurology, University Hospital and University of Zürich, Zurich, Switzerland.
出版信息
NPJ Digit Med. 2020 May 29;3:80. doi: 10.1038/s41746-020-0286-7. eCollection 2020.
Digital health metrics promise to advance the understanding of impaired body functions, for example in neurological disorders. However, their clinical integration is challenged by an insufficient validation of the many existing and often abstract metrics. Here, we propose a data-driven framework to select and validate a clinically relevant core set of digital health metrics extracted from a technology-aided assessment. As an exemplary use-case, the framework is applied to the Virtual Peg Insertion Test (VPIT), a technology-aided assessment of upper limb sensorimotor impairments. The framework builds on a use-case-specific pathophysiological motivation of metrics, models demographic confounds, and evaluates the most important clinimetric properties (discriminant validity, structural validity, reliability, measurement error, learning effects). Applied to 77 metrics of the VPIT collected from 120 neurologically intact and 89 affected individuals, the framework allowed selecting 10 clinically relevant core metrics. These assessed the severity of multiple sensorimotor impairments in a valid, reliable, and informative manner. These metrics provided added clinical value by detecting impairments in neurological subjects that did not show any deficits according to conventional scales, and by covering sensorimotor impairments of the arm and hand with a single assessment. The proposed framework provides a transparent, step-by-step selection procedure based on clinically relevant evidence. This creates an interesting alternative to established selection algorithms that optimize mathematical loss functions and are not always intuitive to retrace. This could help addressing the insufficient clinical integration of digital health metrics. For the VPIT, it allowed establishing validated core metrics, paving the way for their integration into neurorehabilitation trials.
数字健康指标有望促进对身体功能受损情况的理解,例如在神经疾病方面。然而,它们在临床中的整合面临诸多挑战,因为许多现有的且往往较为抽象的指标缺乏充分验证。在此,我们提出一个数据驱动的框架,用于从技术辅助评估中选择并验证一组临床相关的数字健康核心指标。作为一个示例性用例,该框架应用于虚拟插钉测试(VPIT),这是一种对上肢感觉运动障碍的技术辅助评估。该框架基于指标的特定用例病理生理动机构建,对人口统计学混杂因素进行建模,并评估最重要的临床测量属性(判别效度、结构效度、可靠性、测量误差、学习效应)。将该框架应用于从120名神经功能正常个体和89名受影响个体收集的77个VPIT指标时,该框架允许选择10个临床相关的核心指标。这些指标以有效、可靠且信息丰富的方式评估了多种感觉运动障碍的严重程度。这些指标通过检测根据传统量表未显示任何缺陷的神经疾病患者的损伤情况,并通过单次评估涵盖手臂和手部的感觉运动损伤,提供了额外的临床价值。所提出的框架基于临床相关证据提供了一个透明的、逐步的选择程序。这为既定的选择算法提供了一个有趣的替代方案,既定算法优化数学损失函数,且并非总是易于追溯。这有助于解决数字健康指标在临床中整合不足的问题。对于VPIT而言,它允许建立经过验证的核心指标,为将其整合到神经康复试验中铺平道路。