Faculty of Electronics, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
Sensors (Basel). 2020 Jun 10;20(11):3303. doi: 10.3390/s20113303.
The paper presents an operational transconductance amplifier (OTA) with low transconductance (0.62-6.28 nS) and low power consumption (28-270 nW) for the low-frequency analog front-ends in biomedical sensor interfaces. The proposed OTA implements an innovative, highly linear voltage-to-current converter based on the channel-length-modulation effect, which can be rail-to-rail driven. At 1-V supply and 1-V asymmetrical input driving, the linearity error in the current-voltage characteristics is 1.5%, while the total harmonic distortion (THD) of the output current is 0.8%. For a symmetrical 2-V input drive, the linearity error is 0.3%, whereas THD reaches 0.2%. The linearity is robust for the mismatch and the process-voltage-and-temperature (PVT) variations. The temperature drift of transconductance is 10 pS/°C. The prototype circuit was fabricated in 180-nanometer CMOS technology.
本文提出了一种用于生物医学传感器接口低频模拟前端的低跨导(0.62-6.28 nS)和低功耗(28-270 nW)的运算跨导放大器(OTA)。所提出的 OTA 实现了一种基于沟道长度调制效应的创新的、高线性度的电压到电流转换器,可以轨到轨驱动。在 1V 电源和 1V 非对称输入驱动下,电流-电压特性中的线性误差为 1.5%,而输出电流的总谐波失真(THD)为 0.8%。对于对称的 2V 输入驱动,线性误差为 0.3%,而 THD 达到 0.2%。线性度对于失配和工艺-电压-温度(PVT)变化具有鲁棒性。跨导的温度漂移为 10 pS/°C。该原型电路采用 180nm CMOS 技术制造。