Suppr超能文献

Cy3和Cy5荧光团的膜相互作用及其对膜蛋白动力学的影响。

Membrane Interactions of Cy3 and Cy5 Fluorophores and Their Effects on Membrane-Protein Dynamics.

作者信息

Lam Kin, Tajkhorshid Emad

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.

出版信息

Biophys J. 2020 Jul 7;119(1):24-34. doi: 10.1016/j.bpj.2020.05.027. Epub 2020 Jun 2.

Abstract

Organic fluorophores, such as Cy3 and Cy5, have been widely used as chemical labels to probe the structure and dynamics of membrane proteins. Although a number of previous studies have reported on the possibility of some of the water-soluble fluorophores to interact with lipid bilayers, detailed fluorophore-lipid interactions and, more importantly, the potential effect of such interactions on the natural dynamics of the labeled membrane proteins have not been well studied. We have performed a large set of all-atom molecular dynamics simulations employing the highly mobile membrane mimetic model to describe spontaneous partitioning of the fluorophores into lipid bilayers with different lipid compositions. Spontaneous membrane partitioning of Cy3 and Cy5 fluorophores captured in these simulations proceeds in two steps. Electrostatic interaction between the fluorophores and the lipid headgroups facilitates the initial, fast membrane association of the fluorophores, followed by slow insertion of hydrophobic moieties into the lipid bilayer core. After the conversion of the resulting membrane-bound systems to full-membrane representations, biased-exchange umbrella sampling simulations are performed for free energy calculations, revealing a higher energy barrier for partitioning into negatively charged (phosphatidylserine or phosphatidylcholine) membranes than purely zwitterionic (phosphatidylcholine or phosphatidylethanolamine) ones. Furthermore, the potential effect of fluorophore-lipid interactions on membrane proteins has been examined by covalently linking Cy5 to single- and multipass transmembrane helical proteins. Equilibrium simulations show strong position-dependent effects of Cy5-tagging on the structure and natural dynamics of membrane proteins. Interactions between the tagged protein and Cy5 were also observed. Our results suggest that fluorophore-lipid interactions can affect the structure and dynamics of membrane proteins to various extents, especially in systems with higher structural flexibility.

摘要

有机荧光团,如Cy3和Cy5,已被广泛用作化学标签来探测膜蛋白的结构和动力学。尽管此前已有多项研究报道了一些水溶性荧光团与脂质双层相互作用的可能性,但荧光团与脂质的详细相互作用,更重要的是,这种相互作用对标记膜蛋白自然动力学的潜在影响尚未得到充分研究。我们使用高度可移动的膜模拟模型进行了大量全原子分子动力学模拟,以描述荧光团自发分配到具有不同脂质组成的脂质双层中的过程。在这些模拟中捕获的Cy3和Cy5荧光团的自发膜分配分两步进行。荧光团与脂质头部基团之间的静电相互作用促进了荧光团最初的快速膜结合,随后疏水部分缓慢插入脂质双层核心。在将所得的膜结合系统转换为全膜表示后,进行有偏交换伞采样模拟以进行自由能计算,结果表明,与纯两性离子(磷脂酰胆碱或磷脂酰乙醇胺)膜相比,分配到带负电荷(磷脂酰丝氨酸或磷脂酰胆碱)膜中的能垒更高。此外,通过将Cy5共价连接到单通道和多通道跨膜螺旋蛋白上,研究了荧光团与脂质相互作用对膜蛋白的潜在影响。平衡模拟显示,Cy5标记对膜蛋白的结构和自然动力学具有强烈的位置依赖性影响。还观察到了标记蛋白与Cy5之间的相互作用。我们的结果表明,荧光团与脂质的相互作用会在不同程度上影响膜蛋白的结构和动力学,尤其是在具有较高结构灵活性的系统中。

相似文献

1
Membrane Interactions of Cy3 and Cy5 Fluorophores and Their Effects on Membrane-Protein Dynamics.
Biophys J. 2020 Jul 7;119(1):24-34. doi: 10.1016/j.bpj.2020.05.027. Epub 2020 Jun 2.
3
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
4
Modulation of Alzheimer's Aβ protofilament-membrane interactions by lipid headgroups.
ACS Chem Neurosci. 2015 Mar 18;6(3):446-55. doi: 10.1021/cn500277f. Epub 2015 Jan 29.
5
Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.
Comput Biol Chem. 2013 Oct;46:23-31. doi: 10.1016/j.compbiolchem.2013.04.005. Epub 2013 May 7.
6
Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer.
Biophys Chem. 2016 Oct;217:1-7. doi: 10.1016/j.bpc.2016.07.001. Epub 2016 Jul 19.
7
Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.
Biochemistry. 2015 Nov 17;54(45):6852-61. doi: 10.1021/acs.biochem.5b00718. Epub 2015 Nov 3.
9
How transmembrane peptides insert and orientate in biomembranes: a combined experimental and simulation study.
Phys Chem Chem Phys. 2016 Jun 29;18(26):17483-94. doi: 10.1039/c6cp01133k.

引用本文的文献

1
Uridine as a potentiator of aminoglycosides through activation of carbohydrate transporters.
Sci Adv. 2025 Sep 5;11(36):eadw7630. doi: 10.1126/sciadv.adw7630.
2
Atomistic characterization of β2-glycoprotein I domain V interaction with anionic membranes.
J Thromb Haemost. 2024 Nov;22(11):3277-3289. doi: 10.1016/j.jtha.2024.07.010. Epub 2024 Jul 22.
3
The Transpeptidase Sortase A Binds Nucleic Acids and Mediates Mammalian Cell Labeling.
Adv Sci (Weinh). 2024 Jun;11(21):e2305605. doi: 10.1002/advs.202305605. Epub 2024 Apr 5.
4
Structural insight into selectivity of amylin and calcitonin receptor agonists.
Nat Chem Biol. 2024 Feb;20(2):162-169. doi: 10.1038/s41589-023-01393-4. Epub 2023 Aug 3.
5
Membrane dynamics are slowed for Alexa594-labeled membrane proteins due to substrate interactions.
BBA Adv. 2021 Sep 23;1:100026. doi: 10.1016/j.bbadva.2021.100026. eCollection 2021.
6
Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge.
Chem Sci. 2021 Oct 14;12(45):15028-15044. doi: 10.1039/d1sc04445a. eCollection 2021 Nov 24.

本文引用的文献

1
Structure of the Na1.4-β1 Complex from Electric Eel.
Cell. 2017 Jul 27;170(3):470-482.e11. doi: 10.1016/j.cell.2017.06.039. Epub 2017 Jul 20.
2
Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment.
Biochim Biophys Acta Biomembr. 2017 Jul;1859(7):1242-1253. doi: 10.1016/j.bbamem.2017.04.001. Epub 2017 Apr 6.
3
Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail.
Biochemistry. 2017 Jan 10;56(1):281-293. doi: 10.1021/acs.biochem.6b00468. Epub 2016 Dec 20.
4
Cellular encoding of Cy dyes for single-molecule imaging.
Elife. 2016 Dec 12;5:e19088. doi: 10.7554/eLife.19088.
5
CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
Nat Methods. 2017 Jan;14(1):71-73. doi: 10.1038/nmeth.4067. Epub 2016 Nov 7.
6
Atomic-level description of protein-lipid interactions using an accelerated membrane model.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1573-83. doi: 10.1016/j.bbamem.2016.02.027. Epub 2016 Mar 2.
7
CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model.
Biophys J. 2015 Nov 17;109(10):2012-22. doi: 10.1016/j.bpj.2015.10.008.
10
CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
J Comput Chem. 2014 Oct 15;35(27):1997-2004. doi: 10.1002/jcc.23702. Epub 2014 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验