Kyrychenko Alexander, Lim Nathan M, Vasquez-Montes Victor, Rodnin Mykola V, Freites J Alfredo, Nguyen Linh P, Tobias Douglas J, Mobley David L, Ladokhin Alexey S
Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, 66160-7421, USA.
Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv, 61022, Ukraine.
J Membr Biol. 2018 Jun;251(3):379-391. doi: 10.1007/s00232-018-0030-2. Epub 2018 Mar 17.
Dynamic disorder of the lipid bilayer presents a challenge for establishing structure-function relationships in membranous systems. The resulting structural heterogeneity is especially evident for peripheral and spontaneously inserting membrane proteins, which are not constrained by the well-defined transmembrane topology and exert their action in the context of intimate interaction with lipids. Here, we propose a concerted approach combining depth-dependent fluorescence quenching with Molecular Dynamics simulation to decipher dynamic interactions of membrane proteins with the lipid bilayers. We apply this approach to characterize membrane-mediated action of the diphtheria toxin translocation domain. First, we use a combination of the steady-state and time-resolved fluorescence spectroscopy to characterize bilayer penetration of the NBD probe selectively attached to different sites of the protein into membranes containing lipid-attached nitroxyl quenching groups. The constructed quenching profiles are analyzed with the Distribution Analysis methodology allowing for accurate determination of transverse distribution of the probe. The results obtained for 12 NBD-labeled single-Cys mutants are consistent with the so-called Open-Channel topology model. The experimentally determined quenching profiles for labeling sites corresponding to L350, N373, and P378 were used as initial constraints for positioning TH8-9 hairpin into the lipid bilayer for Molecular Dynamics simulation. Finally, we used alchemical free energy calculations to characterize protonation of E362 in soluble translocation domain and membrane-inserted conformation of its TH8-9 fragment. Our results indicate that membrane partitioning of the neutral E362 is more favorable energetically (by ~ 6 kcal/mol), but causes stronger perturbation of the bilayer, than the charged E362.
脂质双层的动态无序给建立膜系统中的结构-功能关系带来了挑战。对于外周膜蛋白和自发插入膜蛋白而言,由此产生的结构异质性尤为明显,这些蛋白不受明确的跨膜拓扑结构的限制,而是在与脂质紧密相互作用的背景下发挥作用。在此,我们提出一种协同方法,将深度依赖的荧光猝灭与分子动力学模拟相结合,以解读膜蛋白与脂质双层的动态相互作用。我们应用这种方法来表征白喉毒素转位结构域的膜介导作用。首先,我们使用稳态荧光光谱和时间分辨荧光光谱相结合的方法,来表征选择性连接到蛋白质不同位点的NBD探针在含有脂质连接的硝酰基猝灭基团的膜中的双层渗透情况。使用分布分析方法分析构建的猝灭曲线,从而能够准确确定探针的横向分布。对12个NBD标记的单半胱氨酸突变体获得的结果与所谓的开放通道拓扑模型一致。将对应于L350、N373和P378的标记位点的实验测定的猝灭曲线用作将TH8-9发夹定位到脂质双层中进行分子动力学模拟的初始约束条件。最后,我们使用炼金术自由能计算来表征可溶性转位结构域中E362的质子化及其TH8-9片段的膜插入构象。我们的结果表明,中性E362的膜分配在能量上更有利(约6千卡/摩尔),但比带电荷的E362对双层的扰动更强。