Lau Jonathan, Trojniak Ashley E, Maraugha Macy J, VanZanten Alyssa J, Osterbaan Alexander J, Serino Andrew C, Ohnsorg Monica L, Cheung Kevin M, Ashby David S, Weiss Paul S, Dunn Bruce S, Anderson Mary E
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Chemistry, Hope College, Holland, Michigan 49423, United States.
Chem Mater. 2019 Nov 12;31(21):8977-8986. doi: 10.1021/acs.chemmater.9b03141. Epub 2019 Oct 15.
Thin-film formation and transport properties of two copper-paddlewheel metal-organic framework (MOF) -based systems (MOF-14 and MOF-399) are investigated for their potential integration into electrochemical device architectures. Thin-film analogs of these two systems are fabricated by the sequential, alternating, solution-phase deposition of the inorganic and organic ligand precursors that result in conformal films via van der Merwe-like growth. Atomic force microscopy reveals smooth film morphologies with surface roughnesses determined by the underlying substrates and linear film growth of 1.4 and 2.2 nm per layer for the MOF-14 and MOF-399 systems, respectively. Electrochemical impedance spectroscopy is used to evaluate the electronic transport properties of the thin films, finding that the MOF-14 analog films demonstrate low electronic conductivity, while MOF-399 analog films are electronically insulating. The intrinsic porosities of these ultrathin MOF analog films are confirmed by cyclic voltammetry redox probe characterization using ferrocene. Larger peak currents are observed for MOF-399 analog films compared to MOF-14 analog films, which is consistent with the larger pores of MOF-399. The layer-by-layer deposition of these systems provides a promising route to incorporate MOFs as thin films with nanoscale thickness control and low surface roughness for electrochemical devices.
研究了两种基于铜桨轮金属有机框架(MOF)的体系(MOF-14和MOF-399)的薄膜形成和传输特性,以探讨其集成到电化学器件结构中的潜力。通过无机和有机配体前体的顺序交替溶液相沉积制备这两种体系的薄膜类似物,通过类范德梅尔生长形成保形薄膜。原子力显微镜显示薄膜形态光滑,表面粗糙度由底层基板决定,MOF-14和MOF-399体系的薄膜每层线性生长分别为1.4和2.2 nm。采用电化学阻抗谱评估薄膜的电子传输特性,发现MOF-14类似物薄膜显示出低电子电导率,而MOF-399类似物薄膜是电子绝缘的。使用二茂铁通过循环伏安氧化还原探针表征证实了这些超薄MOF类似物薄膜的固有孔隙率。与MOF-14类似物薄膜相比,MOF-399类似物薄膜观察到更大的峰值电流,这与MOF-399的较大孔隙一致。这些体系的逐层沉积为将MOF作为具有纳米级厚度控制和低表面粗糙度的薄膜纳入电化学器件提供了一条有前景的途径。