Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, U.S.A.
Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, U.S.A.
Clin Sci (Lond). 2020 Jul 31;134(14):1911-1934. doi: 10.1042/CS20200066.
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
囊性纤维化 (CF) 是一种进行性多器官常染色体隐性遗传病,其肺部的破坏性影响是由 CF 跨膜电导调节因子 (CFTR) 基因突变引起的。发病率和死亡率是由受损的黏液纤毛清除、微生物感染和慢性炎症这三联征引起的。铜绿假单胞菌是 CF 患者的主要呼吸道病原体,感染了大多数晚期患者。尽管其具有公认的临床影响,但导致铜绿假单胞菌发病机制和宿主对铜绿假单胞菌感染反应的分子机制仍不完全清楚。核激素受体过氧化物酶体增殖物激活受体 (PPAR)γ (PPARγ) 在 CF 气道中显示减少。在本研究中,我们试图研究抑制 PPARγ 表达的上游机制及其对气道上皮宿主防御的影响。由错误折叠的 CFTR 和铜绿假单胞菌感染引发的内质网应激 (ER-stress) 触发未折叠蛋白反应 (UPR) 导致 PPARγ 表达减弱。具体来说,蛋白激酶 RNA (PKR)-样内质网激酶 (PERK) 信号通路导致 CCAAT 增强子结合蛋白同源蛋白 (CHOP) 的表达增强。CHOP 诱导导致 PPARγ 表达的抑制。从机制上讲,我们表明 CHOP 诱导介导了 PPARγ 衰减,通过降低抗菌肽 (AMP) 和对氧磷酶-2 (PON-2) 的表达以及增强 IL-8 的表达,影响正常和 ∆F508 原代气道上皮细胞的固有免疫功能。此外,线粒体活性氧物质产生 (mt-ROS) 和 ER-stress 正反馈回路也使线粒体生物能发生失调。此外,我们的研究结果表明,PPARγ 激动剂吡格列酮 (PIO) 在宿主防御到线粒体再能量化等多个细胞水平上对宿主具有有益作用。