Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy.
"Nello Carrara" Institute of Applied Physics, National Research Council, Florence, Italy.
Cancer Res. 2020 Aug 1;80(15):3170-3174. doi: 10.1158/0008-5472.CAN-20-0332. Epub 2020 Jun 15.
Quantitative analysis of biomedical images, referred to as radiomics, is emerging as a promising approach to facilitate clinical decisions and improve patient stratification. The typical radiomic workflow includes image acquisition, segmentation, feature extraction, and analysis of high-dimensional datasets. While procedures for primary radiomic analyses have been established in recent years, processing the resulting radiomic datasets remains a challenge due to the lack of specific tools for doing so. Here we present RadAR (Radiomics Analysis with R), a new software to perform comprehensive analysis of radiomic features. RadAR allows users to process radiomic datasets in their entirety, from data import to feature processing and visualization, and implements multiple statistical methods for analysis of these data. We used RadAR to analyze the radiomic profiles of more than 850 patients with cancer from publicly available datasets and showed that it was able to recapitulate expected results. These results demonstrate RadAR as a reliable and valuable tool for the radiomics community. SIGNIFICANCE: A new computational tool performs comprehensive analysis of high-dimensional radiomic datasets, recapitulating expected results in the analysis of radiomic profiles of >850 patients with cancer from independent datasets.
生物医学图像的定量分析,被称为放射组学,正在成为一种很有前途的方法,可以帮助临床决策,并改善患者分层。典型的放射组学工作流程包括图像采集、分割、特征提取和高维数据集的分析。虽然近年来已经建立了用于主要放射组学分析的程序,但由于缺乏专门的工具来处理这些结果,处理由此产生的放射组学数据集仍然是一个挑战。在这里,我们提出了 RadAR(使用 R 进行放射组学分析),这是一种用于执行放射组学特征全面分析的新软件。RadAR 允许用户完整地处理放射组学数据集,从数据导入到特征处理和可视化,并实现了多种用于分析这些数据的统计方法。我们使用 RadAR 分析了来自公开数据集的 850 多名癌症患者的放射组学特征,并表明它能够重现预期的结果。这些结果表明 RadAR 是放射组学社区的一个可靠和有价值的工具。
一种新的计算工具可对高维放射组学数据集进行全面分析,在对来自独立数据集的 >850 名癌症患者的放射组学特征进行分析时,重现了预期的结果。