Suppr超能文献

CT图像的放射组学分析与肿瘤生态系统多样性的耦合:对IIII期结直肠癌总生存的新见解。

Coupling radiomics analysis of CT image with diversification of tumor ecosystem: A new insight to overall survival in stage IIII colorectal cancer.

作者信息

Huang Yanqi, He Lan, Li Zhenhui, Chen Xin, Han Chu, Zhao Ke, Zhang Yuan, Qu Jinrong, Mao Yun, Liang Changhong, Liu Zaiyi

机构信息

The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.

出版信息

Chin J Cancer Res. 2022 Feb 28;34(1):40-52. doi: 10.21147/j.issn.1000-9604.2022.01.04.

Abstract

OBJECTIVE

This study aimed to establish a method to predict the overall survival (OS) of patients with stage I-III colorectal cancer (CRC) through coupling radiomics analysis of CT images with the measurement of tumor ecosystem diversification.

METHODS

We retrospectively identified 161 consecutive patients with stage I-III CRC who had underwent radical resection as a training cohort. A total of 248 patients were recruited for temporary independent validation as external validation cohort 1, with 103 patients from an external institute as the external validation cohort 2. CT image features to describe tumor spatial heterogeneity leveraging the measurement of diversification of tumor ecosystem, were extracted to build a marker, termed the EcoRad signature. Multivariate Cox regression was used to assess the EcoRad signature, with a prediction model constructed to demonstrate its incremental value to the traditional staging system for OS prediction.

RESULTS

The EcoRad signature was significantly associated with OS in the training cohort [hazard ratio (HR)=6.670; 95% confidence interval (95% CI): 3.433-12.956; P<0.001), external validation cohort 1 (HR=2.866; 95% CI: 1.646-4.990; P<0.001) and external validation cohort 2 (HR=3.342; 95% CI: 1.289-8.663; P=0.002). Incorporating the EcoRad signature into the prediction model presented a higher prediction ability (P<0.001) with respect to the C-index (0.813, 95% CI: 0.804-0.822 in the training cohort; 0.758, 95% CI: 0.751-0.765 in the external validation cohort 1; and 0.746, 95% CI: 0.722-0.770 in external validation cohort 2), compared with the reference model that only incorporated tumor, node, metastasis (TNM) system, as well as a better calibration, improved reclassification and superior clinical usefulness.

CONCLUSIONS

This study establishes a method to measure the spatial heterogeneity of CRC through coupling radiomics analysis with measurement of diversification of the tumor ecosystem, and suggests that this approach could effectively predict OS and could be used as a supplement for risk stratification among stage I-III CRC patients.

摘要

目的

本研究旨在建立一种方法,通过将CT图像的放射组学分析与肿瘤生态系统多样性的测量相结合,预测I-III期结直肠癌(CRC)患者的总生存期(OS)。

方法

我们回顾性地确定了161例连续接受根治性切除术的I-III期CRC患者作为训练队列。共招募了248例患者作为外部验证队列1进行临时独立验证,另有103例来自外部机构的患者作为外部验证队列2。利用肿瘤生态系统多样性的测量来描述肿瘤空间异质性的CT图像特征被提取出来,以构建一个名为EcoRad特征的标志物。多变量Cox回归用于评估EcoRad特征,并构建一个预测模型来证明其对传统分期系统预测OS的增量价值。

结果

EcoRad特征在训练队列中与OS显著相关[风险比(HR)=6.670;95%置信区间(95%CI):3.433-12.956;P<0.001],在外部验证队列1中(HR=2.866;95%CI:1.646-4.990;P<0.001)以及外部验证队列2中(HR=3.342;95%CI:1.289-8.663;P=0.002)。将EcoRad特征纳入预测模型后,相对于仅纳入肿瘤、淋巴结、转移(TNM)系统的参考模型,其在C指数方面表现出更高的预测能力(P<0.001)(训练队列中C指数为0.813,95%CI:0.804-0.822;外部验证队列1中为0.758,95%CI:0.751-0.765;外部验证队列2中为0.746,95%CI:0.722-0.770),并且具有更好的校准、改进的重新分类和更高的临床实用性。

结论

本研究建立了一种通过将放射组学分析与肿瘤生态系统多样性测量相结合来测量CRC空间异质性的方法,并表明这种方法可以有效地预测OS,并可作为I-III期CRC患者风险分层的补充。

相似文献

本文引用的文献

4
Cancer Statistics, 2021.癌症统计数据,2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
7
Comprehensive Analysis of Radiomic Datasets by RadAR.基于 RadAR 的影像组学数据集综合分析
Cancer Res. 2020 Aug 1;80(15):3170-3174. doi: 10.1158/0008-5472.CAN-20-0332. Epub 2020 Jun 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验