Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA.
Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA.
Neuroimage. 2020 Oct 15;220:117048. doi: 10.1016/j.neuroimage.2020.117048. Epub 2020 Jun 13.
Sensory gating (SG) is a neurophysiological phenomenon whereby the response to the second stimulus in a repetitive pair is attenuated. This filtering of irrelevant or redundant information is thought to preserve neural resources for more behaviorally-relevant stimuli and thereby reflect the functional inhibition of sensory input. Developing a SG paradigm in which optimal suppression of sensory input is achieved requires investigators to consider numerous parameters such as stimulus intensity, time between stimulus pairs, and the inter-stimulus interval (ISI) within each pair. While these factors have been well defined for the interrogation of auditory gating, the precise parameters for eliciting optimal gating in the somatosensory domain are far less understood. To address this, we investigated the impact of varying the ISI within each identical pair of stimuli on gating using magnetoencephalography (MEG). Specifically, 25 healthy young adults underwent paired-pulse electrical stimulation of the median nerve with increasing ISIs between 100 and 1000 ms (in 100 ms increments). Importantly, for correspondence with previous studies of somatosensory gating, both time-domain and oscillatory neural responses to somatosensory stimulation were evaluated. Our results indicated that gating of somatosensory input was optimal (i.e., best suppression) for trials with an ISI of 200-220 ms, as evidenced by the smallest gating ratios and through statistical modeling estimations of optimal suppression. Importantly, this was true irrespective of whether oscillatory or evoked neural activity was used to calculate SG. Interestingly, oscillatory metrics of gating calculated using peak gamma (30-75 Hz) power and frequency revealed more robust gating (i.e., smaller ratios) than those calculated using time-domain neural responses, suggesting that high frequency oscillations may provide a more sensitive measure of SG. These findings have important implications for the development of optimal protocols and analysis pipelines to interrogate SG and inhibitory processing with a higher degree of sensitivity and accuracy.
感觉门控(SG)是一种神经生理现象,即重复对刺激的第二个响应被减弱。这种对无关或冗余信息的过滤被认为是为了保留神经资源,以应对更具行为相关性的刺激,从而反映出对感觉输入的功能抑制。开发一种能够实现最佳感觉输入抑制的 SG 范式,需要研究人员考虑许多参数,例如刺激强度、刺激对之间的时间以及每个对中的刺激间间隔(ISI)。虽然这些因素已经在听觉门控的研究中得到了很好的定义,但在躯体感觉域中诱发最佳门控的确切参数却知之甚少。为了解决这个问题,我们使用脑磁图(MEG)研究了每个刺激对中 ISI 变化对门控的影响。具体来说,25 名健康的年轻成年人接受正中神经的成对脉冲电刺激,ISI 在 100 到 1000 毫秒之间变化(每次增加 100 毫秒)。重要的是,为了与之前的躯体感觉门控研究相吻合,我们评估了躯体感觉刺激的时域和振荡神经响应。我们的结果表明,ISI 为 200-220 毫秒时,躯体感觉输入的门控效果最佳(即最佳抑制),这可以通过最小的门控比和通过最优抑制的统计模型估计来证明。重要的是,无论使用振荡还是诱发神经活动来计算 SG,这都是如此。有趣的是,使用峰值伽马(30-75 Hz)功率和频率计算的门控振荡指标比使用时域神经响应计算的门控指标具有更强的门控(即更小的比值),这表明高频振荡可能提供了一种更敏感的 SG 测量方法。这些发现对于开发最佳方案和分析管道以更高的灵敏度和准确性来研究 SG 和抑制处理具有重要意义。