Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
J Biosci Bioeng. 2020 Sep;130(3):272-282. doi: 10.1016/j.jbiosc.2020.04.011. Epub 2020 Jun 13.
The industrially relevant biopolymer poly-γ-glutamic acid (γ-PGA) is commonly synthesized using glycerol, citrate, and glutamic acid as carbon sources. In this study, two strains capable of utilizing glucose as sole carbon source for γ-PGA synthesis were constructed. Efficient γ-PGA production was achieved with derivatives of the well-investigated laboratory strain Bacillus subtilis 168, by replacing the native promoter of the PGA synthetase operon with the strong constitutive promoter P or with the xylose-inducible promoter P. The carbon yield for γ-PGA increased by 129% to 0.131 C-mol C-mol when using glucose as the sole substrate compared to the conventional carbon source mixture glycerol, citrate, and glutamic acid. The characterization of the produced γ-PGA demonstrated a time-dependent molecular weight of 1180-1850 kDa and a d-glutamic acid monomer content of 49-62%. To elucidate the consequences of γ-PGA production, we characterized the engineered strain by metabolomics. While the metabolite concentrations in the TCA cycle leading up to 2-oxoglutarate decreased in γ-PGA producer strains, the glutamic acid concentration was constant, despite the drastic increase in glutamic acid demand. The results are discussed in the context of metabolic regulation and future metabolic engineering strategies to enhance precursor supply for γ-PGA synthesis from glucose.
聚-γ-谷氨酸(γ-PGA)是一种具有工业应用价值的生物聚合物,通常使用甘油、柠檬酸盐和谷氨酸作为碳源进行合成。在本研究中,构建了两株能够以葡萄糖为唯一碳源合成 γ-PGA 的菌株。通过用强组成型启动子 P 或木糖诱导型启动子 P 替代 PGA 合酶操纵子的天然启动子,对研究充分的实验室菌株枯草芽孢杆菌 168 的衍生物进行了改造,实现了高效的 γ-PGA 生产。与传统的碳源混合物甘油、柠檬酸盐和谷氨酸相比,当使用葡萄糖作为唯一底物时,γ-PGA 的碳收率提高了 129%,达到 0.131 C-mol C-mol。所产生的 γ-PGA 的特性分析表明,其分子量在 1180-1850 kDa 之间,D-谷氨酸单体含量为 49-62%。为了阐明 γ-PGA 生产的后果,我们通过代谢组学对工程菌株进行了表征。虽然在 TCA 循环中导致 2-氧戊二酸的代谢物浓度在 γ-PGA 产生菌株中降低,但谷氨酸浓度保持不变,尽管谷氨酸需求急剧增加。结果将在代谢调控和未来的代谢工程策略的背景下进行讨论,以增强从葡萄糖合成 γ-PGA 的前体供应。