Suppr超能文献

用于识别COVID-19药物再利用机会的网络医学框架

Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19.

作者信息

Morselli Gysi Deisy, Do Valle Ítalo, Zitnik Marinka, Ameli Asher, Gan Xiao, Varol Onur, Ghiassian Susan Dina, Patten J J, Davey Robert, Loscalzo Joseph, Barabási Albert-László

机构信息

Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA.

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

ArXiv. 2020 Apr 15:arXiv:2004.07229v2.

Abstract

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of drug development.

摘要

当前的大流行凸显了对方法的需求,这些方法能够快速且可靠地根据临床批准的化合物对SARS-CoV-2感染的潜在有效性进行优先级排序。在过去十年中,网络医学已开发并验证了多种用于药物再利用的预测算法,利用基于亚细胞网络的药物靶点与疾病基因之间的关系。在此,我们部署了依赖人工智能、网络扩散和网络邻近性的算法,让它们各自对6340种药物针对SARS-CoV-2的预期疗效进行排名。为了检验这些预测,我们将在VeroE6细胞中经过实验筛选的918种药物以及正在进行临床试验的药物清单作为基本事实,这些清单反映了医学界对具有潜在COVID-19疗效的药物的评估。我们发现,虽然大多数算法对这些基本事实数据具有预测能力,但没有一种单一方法在所有数据集和指标上都能提供始终可靠的结果。这促使我们开发一种多模态方法,融合所有算法的预测结果,结果表明不同预测方法之间的共识始终超过最佳单一管道的性能。我们发现,在成功降低病毒感染的77种药物中,有76种不与SARS-CoV-2靶向的蛋白质结合,这表明这些药物依赖基于网络的作用,而这些作用无法通过基于对接的策略来识别。这些进展为识别可用于未来病原体和被药物开发成本及漫长时间表所忽视的疾病的可再利用药物提供了一种方法途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14b8/9759064/29400dd5c5e0/nihpp-2004.07229v2-f0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验