Farthing Trevor S, Dawson Daniel E, Sanderson Michael W, Lanzas Cristina
Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University Raleigh NC USA.
Department of Diagnostic Medicine and Pathobiology College of Veterinary Medicine Center for Outcomes Research and Epidemiology Kansas State University Manhattan KS USA.
Ecol Evol. 2020 Apr 12;10(11):4702-4715. doi: 10.1002/ece3.6225. eCollection 2020 Jun.
Point data obtained from real-time location systems (RTLSs) can be processed into animal contact networks, describing instances of interaction between tracked individuals. Proximity-based definitions of interanimal "contact," however, may be inadequate for describing epidemiologically and sociologically relevant interactions involving body parts or other physical spaces relatively far from tracking devices. This weakness can be overcome by using polygons, rather than points, to represent tracked individuals and defining "contact" as polygon intersections.We present novel procedures for deriving polygons from RTLS point data while maintaining distances and orientations associated with individuals' relocation events. We demonstrate the versatility of this methodology for network modeling using two contact network creation examples, wherein we use this procedure to create (a) interanimal physical contact networks and (b) a visual contact network. Additionally, in creating our networks, we establish another procedure to adjust definitions of "contact" to account for RTLS positional accuracy, ensuring all true contacts are likely captured and represented in our networks.Using the methods described herein and the associated R package we have developed, called , researchers can derive polygons from RTLS points. Furthermore, we show that these polygons are highly versatile for contact network creation and can be used to answer a wide variety of epidemiological, ethological, and sociological research questions.By introducing these methodologies and providing the means to easily apply them through the R package, we hope to vastly improve network-model realism and researchers' ability to draw inferences from RTLS data.
从实时定位系统(RTLS)获得的点数据可以处理成动物接触网络,描述被追踪个体之间的互动情况。然而,基于接近度的动物间“接触”定义,可能不足以描述涉及身体部位或相对远离追踪设备的其他物理空间的、具有流行病学和社会学意义的互动。通过使用多边形而非点来表示被追踪个体,并将“接触”定义为多边形相交,可以克服这一弱点。我们提出了从RTLS点数据中导出多边形的新程序,同时保持与个体迁移事件相关的距离和方向。我们使用两个接触网络创建示例展示了这种方法在网络建模中的通用性,其中我们使用此程序创建(a)动物间身体接触网络和(b)视觉接触网络。此外,在创建我们的网络时,我们建立了另一个程序来调整“接触”的定义,以考虑RTLS的位置精度,确保我们的网络中可能捕捉并呈现所有真实接触。使用本文所述的方法以及我们开发的名为 的相关R包,研究人员可以从RTLS点中导出多边形。此外,我们表明这些多边形在创建接触网络方面具有高度通用性,可用于回答各种流行病学、动物行为学和社会学研究问题。通过引入这些方法并提供通过R包轻松应用它们的手段,我们希望大幅提高网络模型的真实性以及研究人员从RTLS数据中得出推论的能力。