Suppr超能文献

一种环绕运动路径随机化方法,用于区分动物相互作用的社会和空间驱动因素。

A wrap-around movement path randomization method to distinguish social and spatial drivers of animal interactions.

机构信息

Department of Ecology and Evolutionary Biology, University of California , Los Angeles, CA, USA.

School of Zoology, Tel-Aviv University , Tel Aviv, Israel.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2024 Oct 21;379(1912):20220531. doi: 10.1098/rstb.2022.0531. Epub 2024 Sep 4.

Abstract

Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures () emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.

摘要

研究空间-社会界面需要能够区分互动的社会和空间驱动因素的工具。测试关于决定动物互动因素的假设通常涉及将观察到的互动与参考或“空”模型进行比较。在参考模型中考虑社会互动空间驱动因素的一种方法是随机化动物的运动路径,以分离空间和社会表型,同时保持对运动的环境影响。在这里,我们更新了一种检测社会吸引力超过空间约束影响的参考模型。我们探索了使用我们的“环绕”方法,并使用基于代理的模拟比较其性能与以前的方法。环绕方法提供了与原始跟踪数据更相似的参考模型,同时仍然区分社会和空间驱动因素。此外,环绕方法比其前身产生的假阳性更少,特别是当动物不是每天晚上回到一个地方,而是在本地或方向上改变运动焦点时。最后,我们表明,GPS 跟踪的秃鹫之间的相互作用是由社会吸引力而不是它们的运动空间约束引起的。我们最后强调了更新方法最适合测试关于社会互动潜在原因的假设的生物学情况。本文是主题为“空间-社会界面:理论和经验整合”的特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c16/11449205/e15bd6fa491b/rstb.2022.0531.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验