Lee Dongho, Baltazar Valentin Urena, Smart Tyler J, Ping Yuan, Choi Kyoung-Shin
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29275-29284. doi: 10.1021/acsami.0c05359. Epub 2020 Jun 18.
A new electrochemical, solution-based synthesis method to prepare uniform multinary oxide photoelectrodes was developed. This method involves solubilizing multiple metal ions as metal-catechol complexes in a pH condition where they are otherwise insoluble. When some of the catechol ligands are electrochemically oxidized, the remaining metal complexes become insoluble and are deposited as metal-catechol films on the working electrode. The resulting films are then annealed to form crystalline multinary oxide electrodes. Because catechol can serve as a complexing agent for a variety of metal ions, the newly developed method can be used to prepare a variety of multinary oxide films. In the present study, we used this method to prepare n-type FeTiO photoanodes and investigated their photoelectrochemical properties for use in a photoelectrochemical water-splitting cell. We also performed a computational investigation with two goals. The first goal was to investigate small electron polaron formation in FeTiO. Charge transport in most oxide photoelectrodes involves small polaron hopping, but small polaron formation in FeTiO has not been examined prior to this work. The second goal was to investigate the effect of substitutional Sn doping at the Fe site on the electronic band structure and the carrier concentration of FeTiO. The combined experimental and theoretical results presented in this study greatly improve our understanding of FeTiO for use as a photoanode.
开发了一种新的基于溶液的电化学合成方法来制备均匀的多元氧化物光电极。该方法包括在pH条件下将多种金属离子溶解为金属 - 儿茶酚配合物,否则它们在该条件下不溶。当一些儿茶酚配体被电化学氧化时,剩余的金属配合物变得不溶,并作为金属 - 儿茶酚膜沉积在工作电极上。然后将所得的膜退火以形成结晶多元氧化物电极。由于儿茶酚可以作为多种金属离子的络合剂,因此新开发的方法可用于制备各种多元氧化物膜。在本研究中,我们使用该方法制备了n型FeTiO光阳极,并研究了它们在光电化学水分解电池中的光电化学性质。我们还进行了一项有两个目标的计算研究。第一个目标是研究FeTiO中形成小电子极化子的情况。大多数氧化物光电极中的电荷传输涉及小极化子跳跃,但在这项工作之前尚未研究过FeTiO中小极化子的形成。第二个目标是研究在Fe位点上进行替代Sn掺杂对FeTiO的电子能带结构和载流子浓度的影响。本研究中提出的实验和理论相结合的结果极大地增进了我们对用作光阳极的FeTiO的理解。