Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States.
Division of Experimental Therapeutics, Department of Medicine, Columbia University Medical Center, New York, New York 10032, United States.
ACS Synth Biol. 2020 Jul 17;9(7):1907-1910. doi: 10.1021/acssynbio.0c00131. Epub 2020 Jul 1.
Molecular computing offers a powerful framework for biosensing and signal processing at the nanoscale. However, for applications, the use of conventional DNA components can lead to false positive signals being generated due to degradation of circuit components by nuclease enzymes. Here, we use hybrid chiral molecules, consisting of both l- and d-nucleic acid domains, to implement leakless signal translators that enable d-nucleic acid signals to be detected by hybridization and then translated into a robust l-DNA signal for further analysis. We show that our system is robust to false positive signals even if the d-DNA components are degraded by nucleases, thanks to circuit-level robustness. This work thus broadens the scope and applicability of DNA-based molecular computers for practical, applications.
分子计算为纳米尺度的生物传感和信号处理提供了强大的框架。然而,对于应用而言,由于核酸酶对电路组件的降解,使用传统的 DNA 组件可能会导致产生假阳性信号。在这里,我们使用混合手性分子,由 l-和 d-核酸域组成,来实现无泄漏信号转换器,使 d-核酸信号能够通过杂交进行检测,然后转化为稳健的 l-DNA 信号进行进一步分析。我们表明,由于电路级别的稳健性,即使 d-DNA 组件被核酸酶降解,我们的系统也能抵抗假阳性信号。因此,这项工作拓宽了基于 DNA 的分子计算机在实际应用中的范围和适用性。