Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States.
ACS Synth Biol. 2021 Jan 15;10(1):209-212. doi: 10.1021/acssynbio.0c00527. Epub 2020 Dec 21.
To overcome technical challenges associated with the use of DNA strand-displacement circuits , including degradation by cellular nucleases, researchers are increasingly turning to bio-orthogonal l-DNA. Although enhanced stability and improved performance of l-DNA-based circuits within living cells are often implied, direct experimental evidence has not been provided. Herein, we directly compare the functional stability and kinetics of d-DNA and l-DNA strand-displacement in live cells for the first time. We show that l-DNA strand-displacement reaction systems have minimal "leak", fast reaction kinetics, and prolonged stability inside living cells as compared to conventional d-DNA. Furthermore, using "heterochiral" strand-displacement, we demonstrate that biostable l-DNA reaction components can be easily interfaced with native DNA inside cells. Overall, our results strongly support the broader adoption of l-DNA in the field of DNA molecular circuitry, especially for applications.
为了克服与 DNA 链置换电路使用相关的技术挑战,包括细胞核酶的降解,研究人员越来越多地转向生物正交的 l-DNA。尽管 l-DNA 基电路在活细胞内的稳定性和性能得到了增强,但并没有提供直接的实验证据。在此,我们首次直接比较了活细胞中 d-DNA 和 l-DNA 链置换的功能稳定性和动力学。我们表明,与传统的 d-DNA 相比,l-DNA 链置换反应系统在活细胞内具有最小的“泄漏”、快速的反应动力学和更长的稳定性。此外,我们使用“异手性”链置换,证明了生物稳定的 l-DNA 反应成分可以很容易地与细胞内的天然 DNA 接口。总的来说,我们的结果强烈支持在 DNA 分子电路领域更广泛地采用 l-DNA,特别是在应用方面。