Suppr超能文献

AMBER中自由能方法的验证

Validation of Free Energy Methods in AMBER.

作者信息

Tsai Hsu-Chun, Tao Yujun, Lee Tai-Sung, Merz Kenneth M, York Darrin M

机构信息

Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States.

出版信息

J Chem Inf Model. 2020 Nov 23;60(11):5296-5300. doi: 10.1021/acs.jcim.0c00285. Epub 2020 Jul 6.

Abstract

Herein we provide high-precision validation tests of the latest GPU-accelerated free energy code in AMBER. We demonstrate that consistent free energy results are obtained in both the gas phase and in solution. We first show, in the context of thermodynamic integration (TI), that the results are invariant with respect to "split" (e.g., stepwise decharge-vdW-recharge) versus "unified" protocols. This brought to light a subtle inconsistency in previous versions of AMBER that was traced to the improper treatment of 1-4 vdW and electrostatic interactions involving atoms across the softcore boundary. We illustrate that under the assumption that the ensembles produced by different legs of the alchemical transformation between molecules A and B in the gas phase and aqueous phase are very small, the inconsistency in the relative hydration free energy ΔΔ[A → B] = Δ[A → B] - Δ[A → B] is minimal. However, for general cases where the ensembles are shown to be substantially different, as expected in ligand-protein binding applications, these errors can be large. Finally, we demonstrate that results for relative hydration free energy simulations are independent of TI or multistate Bennett's acceptance ratio (MBAR) analysis, invariant to the specific choice of the softcore region, and in agreement with results derived from absolute hydration free energy values.

摘要

在此,我们对AMBER中最新的GPU加速自由能代码进行了高精度验证测试。我们证明,在气相和溶液中都能获得一致的自由能结果。我们首先在热力学积分(TI)的背景下表明,结果对于“拆分”(例如,逐步去电荷-范德华-再充电)与“统一”协议是不变的。这揭示了AMBER先前版本中一个细微的不一致性,该不一致性可追溯到对涉及软核边界两侧原子的1-4范德华和静电相互作用的不当处理。我们说明,在假设气相和水相中分子A和B之间的炼金术转变的不同步骤产生的系综非常小的情况下,相对水合自由能ΔΔ[A→B]=Δ[A→B]-Δ[A→B]中的不一致性最小。然而,对于系综显示出显著不同的一般情况,如在配体-蛋白质结合应用中预期的那样,这些误差可能很大。最后,我们证明相对水合自由能模拟的结果与TI或多态贝内特接受率(MBAR)分析无关,与软核区域的特定选择无关,并且与从绝对水合自由能值得出的结果一致。

相似文献

1
Validation of Free Energy Methods in AMBER.AMBER中自由能方法的验证
J Chem Inf Model. 2020 Nov 23;60(11):5296-5300. doi: 10.1021/acs.jcim.0c00285. Epub 2020 Jul 6.

引用本文的文献

1
Recent Developments in Amber Biomolecular Simulations.琥珀色生物分子模拟的最新进展。
J Chem Inf Model. 2025 Aug 11;65(15):7835-7843. doi: 10.1021/acs.jcim.5c01063. Epub 2025 Jul 29.
5
Software Infrastructure for Next-Generation QM/MM-ΔMLP Force Fields.用于下一代QM/MM-ΔMLP力场的软件基础设施。
J Phys Chem B. 2024 Jul 4;128(26):6257-6271. doi: 10.1021/acs.jpcb.4c01466. Epub 2024 Jun 21.
7
Modern Alchemical Free Energy Methods for Drug Discovery Explained.现代药物发现中的炼金术自由能方法解析。
ACS Phys Chem Au. 2023 Oct 4;3(6):478-491. doi: 10.1021/acsphyschemau.3c00033. eCollection 2023 Nov 22.
8
ACES: Optimized Alchemically Enhanced Sampling.ACES:优化的化学增强采样法
J Chem Theory Comput. 2023 Jan 11. doi: 10.1021/acs.jctc.2c00697.

本文引用的文献

3
Using AMBER18 for Relative Free Energy Calculations.使用 AMBER18 进行相对自由能计算。
J Chem Inf Model. 2019 Jul 22;59(7):3128-3135. doi: 10.1021/acs.jcim.9b00105. Epub 2019 Jun 20.
10
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.OpenMM 7:分子动力学高性能算法的快速开发。
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. eCollection 2017 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验