Giese Timothy J, York Darrin M
Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854-8087 , United States.
J Chem Theory Comput. 2018 Mar 13;14(3):1564-1582. doi: 10.1021/acs.jctc.7b01175. Epub 2018 Feb 7.
There has been a resurgence of interest in free energy methods motivated by the performance enhancements offered by molecular dynamics (MD) software written for specialized hardware, such as graphics processing units (GPUs). In this work, we exploit the properties of a parameter-interpolated thermodynamic integration (PI-TI) method to connect states by their molecular mechanical (MM) parameter values. This pathway is shown to be better behaved for Mg → Ca transformations than traditional linear alchemical pathways (with and without soft-core potentials). The PI-TI method has the practical advantage that no modification of the MD code is required to propagate the dynamics, and unlike with linear alchemical mixing, only one electrostatic evaluation is needed (e.g., single call to particle-mesh Ewald) leading to better performance. In the case of AMBER, this enables all the performance benefits of GPU-acceleration to be realized, in addition to unlocking the full spectrum of features available within the MD software, such as Hamiltonian replica exchange (HREM). The TI derivative evaluation can be accomplished efficiently in a post-processing step by reanalyzing the statistically independent trajectory frames in parallel for high throughput. We also show how one can evaluate the particle mesh Ewald contribution to the TI derivative evaluation without needing to perform two reciprocal space calculations. We apply the PI-TI method with HREM on GPUs in AMBER to predict p K values in double stranded RNA molecules and make comparison with experiments. Convergence to under 0.25 units for these systems required 100 ns or more of sampling per window and coupling of windows with HREM. We find that MM charges derived from ab initio QM/MM fragment calculations improve the agreement between calculation and experimental results.
受为专用硬件(如图形处理单元(GPU))编写的分子动力学(MD)软件所提供的性能提升的推动,人们对自由能方法的兴趣再度兴起。在这项工作中,我们利用参数插值热力学积分(PI-TI)方法的特性,通过分子力学(MM)参数值来连接状态。结果表明,对于Mg→Ca转变,这条路径比传统的线性炼金术路径(有无软核势)表现更好。PI-TI方法的实际优势在于,传播动力学无需修改MD代码,而且与线性炼金术混合不同,只需要一次静电评估(例如,单次调用粒子网格埃瓦尔德方法),从而带来更好的性能。对于AMBER而言,这不仅能够实现GPU加速的所有性能优势,还能解锁MD软件中的所有功能,如哈密顿量副本交换(HREM)。TI导数评估可以在后期处理步骤中通过并行重新分析统计独立的轨迹帧来高效完成,以实现高通量。我们还展示了如何在无需进行两次倒易空间计算的情况下评估粒子网格埃瓦尔德对TI导数评估的贡献。我们在AMBER的GPU上应用带有HREM的PI-TI方法来预测双链RNA分子中的pK值,并与实验进行比较。对于这些系统,收敛到0.25单位以下需要每个窗口100 ns或更多的采样以及窗口与HREM的耦合。我们发现,从从头算QM/MM片段计算得出的MM电荷改善了计算结果与实验结果之间的一致性。