Suppr超能文献

蛋白质激发态的片段量子力学方法:发展及其在绿色荧光蛋白中的应用

Fragment Quantum Mechanical Method for Excited States of Proteins: Development and Application to the Green Fluorescent Protein.

作者信息

Jin Xinsheng, Glover William J, He Xiao

机构信息

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.

出版信息

J Chem Theory Comput. 2020 Aug 11;16(8):5174-5188. doi: 10.1021/acs.jctc.9b00980. Epub 2020 Jul 10.

Abstract

Understanding the excited-state properties of luminescent biomolecules is of central importance to their biophysical applications. In this study, we develop the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method for quantitatively characterizing properties of covalently bonded systems with localized excitations (i.e., involving a single chromophore), such as fluorescent proteins. The excitation energy, transition dipole moment, and oscillator strength of wild-type Green Fluorescent Protein (wt-GFP) calculated by EE-GMFCC are found to be in excellent agreement with full system time-dependent density functional theory results. We also applied the Polarized Protein-Specific Charge model to wt-GFP, and found that electronic polarization of the protein is critical in stabilizing hydrogen bonding interactions in wt-GFP, which influences its absorption spectrum. The predicted absorption spectra of wt-GFP in the A and B states qualitatively agree with experiment. The fragmentation approach further allows a straightforward per residue decomposition of the excitation which reveals the influence of the protein environment on the absorption spectra of wt-GFP A and B states. Our results demonstrate that the EE-GMFCC method is both accurate and efficient for excited-state property calculations on proteins.

摘要

了解发光生物分子的激发态性质对于其生物物理应用至关重要。在本研究中,我们开发了静电嵌入共轭封端广义分子片段化方法(EE-GMFCC),用于定量表征具有局域激发(即涉及单个发色团)的共价键合系统的性质,如荧光蛋白。通过EE-GMFCC计算得到的野生型绿色荧光蛋白(wt-GFP)的激发能、跃迁偶极矩和振子强度与全系统含时密度泛函理论结果高度吻合。我们还将极化蛋白特异性电荷模型应用于wt-GFP,发现蛋白的电子极化对于稳定wt-GFP中的氢键相互作用至关重要,这会影响其吸收光谱。预测的wt-GFP在A态和B态的吸收光谱与实验定性相符。片段化方法还允许对激发进行直接的逐个残基分解,从而揭示蛋白环境对wt-GFP A态和B态吸收光谱的影响。我们的结果表明,EE-GMFCC方法在蛋白质激发态性质计算方面既准确又高效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验