Suppr超能文献

人工智能通过解决诱导折叠问题来教授药物靶向蛋白质。

Artificial Intelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem.

机构信息

CONICET, National Research Council, Buenos Aires 1033, Argentina.

INQUISUR-CONICET-UNS, Avenida Alem 1253, Bahı́a Blanca 8000, Argentina.

出版信息

Mol Pharm. 2020 Aug 3;17(8):2761-2767. doi: 10.1021/acs.molpharmaceut.0c00470. Epub 2020 Jul 7.

Abstract

We explore the possibility of a deep learning (DL) platform that steers drug design to target proteins by inducing binding-competent conformations. We deal with the fact that target proteins are usually not fixed targets but structurally adapt to the ligand in ways that need to be predicted to enable pharmaceutical discovery. In contrast with protein folding predictors, the proposed DL system integrates signals for structural disorder to predict conformations in floppy regions of the target protein that rely on associations with the purposely designed drug to maintain their structural integrity. This is tantamount to solve the drug-induced folding problem within an AI-empowered drug discovery platform. Preliminary testing of the proposed DL platform reveals that it is possible to infer the induced folding ensemble from which a therapeutically targetable conformation gets selected by DL-instructed drug design.

摘要

我们探索了一种深度学习(DL)平台的可能性,该平台通过诱导结合能力构象来引导药物设计以靶向蛋白质。我们处理这样一个事实,即靶蛋白通常不是固定的靶标,而是通过需要预测的方式结构适应配体,以实现药物发现。与蛋白质折叠预测器不同,所提出的 DL 系统集成了结构无序的信号,以预测靶蛋白的松软区域中的构象,这些构象依赖于与专门设计的药物的关联来维持其结构完整性。这相当于在人工智能赋能的药物发现平台中解决药物诱导的折叠问题。对所提出的 DL 平台的初步测试表明,从诱导折叠的集合中推断出一个治疗性靶构象是可能的,这是通过 DL 指导的药物设计来实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验