Suppr超能文献

从静态结构到动态结构:基于图的深度学习提高结合亲和力预测。

From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning.

机构信息

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.

出版信息

Adv Sci (Weinh). 2024 Oct;11(40):e2405404. doi: 10.1002/advs.202405404. Epub 2024 Aug 29.

Abstract

Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.

摘要

准确预测蛋白质-配体结合亲和力是基于结构的药物设计中的一个重要挑战。尽管最近在基于数据的亲和力预测方法方面取得了进展,但它们的准确性仍然有限,部分原因是这些方法仅利用静态晶体结构,而实际的结合亲和力通常由蛋白质和配体之间的热力学组合决定。一种有效的方法是使用分子动力学 (MD) 模拟来近似这样的热力学组合。在这里,我们整理了一个包含 3218 个不同蛋白质-配体复合物的 MD 数据集,并进一步开发了基于图的深度学习模型 Dynaformer,通过从 MD 轨迹中学习蛋白质-配体相互作用的几何特征来预测结合亲和力。计算机实验表明,该模型在 CASF-2016 基准数据集上的评分和排序能力达到了最新水平,优于迄今为止报道的方法。此外,我们还使用 Dynaformer 对热休克蛋白 90 (HSP90) 进行了虚拟筛选,鉴定出 20 个候选化合物,并进一步通过实验验证了它们的结合亲和力。Dynaformer 在虚拟药物筛选中显示出了有前途的结果,揭示了 12 个命中化合物(两个处于亚毫摩尔范围内),包括几个新的骨架。总体而言,这些结果表明该方法为加速早期药物发现过程提供了一条有前途的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93a2/11516055/45ba5706a546/ADVS-11-2405404-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验