Suppr超能文献

基于结构的深度学习药物发现。

Structure-Based Drug Discovery with Deep Learning.

机构信息

Institute for Complex Molecular Systems and Dept. Biomedical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands.

Alliance TU/e, WUR, UU, UMC, Centre for Living Technologies, 3584 CB, Utrecht, The Netherlands.

出版信息

Chembiochem. 2023 Jul 3;24(13):e202200776. doi: 10.1002/cbic.202200776. Epub 2023 Jun 13.

Abstract

Artificial intelligence (AI) in the form of deep learning has promise for drug discovery and chemical biology, for example, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules de novo. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep-learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a renaissance in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.

摘要

人工智能(AI)在深度学习形式下,在药物发现和化学生物学方面具有广阔的应用前景,例如预测蛋白质结构和分子生物活性、规划有机合成和从头设计分子。虽然药物发现中的大多数深度学习工作都集中在基于配体的方法上,但基于结构的药物发现有可能解决未解决的挑战,例如对未探索的蛋白质靶标进行亲和力预测、阐明结合机制以及合理化相关的化学动力学性质。深度学习方法的进步和对蛋白质三级结构的准确预测的可用性,倡导了在人工智能指导下基于结构的药物发现方法的复兴。本文综述了基于结构的深度学习在药物发现中最突出的算法概念,并预测了未来的机遇、应用和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验