Suppr超能文献

通过随机动力学模拟测定钌多吡啶发色团中的超快弛豫。

Ultrafast Relaxations in Ruthenium Polypyridyl Chromophores Determined by Stochastic Kinetics Simulations.

机构信息

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

出版信息

J Phys Chem B. 2020 Jul 16;124(28):5971-5985. doi: 10.1021/acs.jpcb.0c03110. Epub 2020 Jul 1.

Abstract

Maximizing the efficiency of solar energy conversion using dye assemblies rests on understanding where the energy goes following absorption. Transient spectroscopies in solution are useful for this purpose, and the time-resolved data are usually analyzed with a sum of exponentials. This treatment assumes that dynamic events are well separated in time, and that the resulting exponential prefactors and phenomenological lifetimes are related directly to primary physical values. Such assumptions break down for coincident absorption, emission, and excited state relaxation that occur in transient absorption and photoluminescence of tris(2,2'-bipyridine)ruthenium(2+) derivatives, confounding the physical meaning of the reported lifetimes. In this work, we use inductive modeling and stochastic chemical kinetics to develop a detailed description of the primary ultrafast photophysics in transient spectroscopies of a series of Ru dyes, as an alternative to sums of exponential analysis. Commonly invoked three-level schemes involving absorption, intersystem crossing (ISC), and slow nonradiative relaxation and incoherent emission to the ground state cannot reproduce the experimentally measured spectra. The kinetics simulations reveal that ultrafast decay from the singlet excited state manifold to the ground state competes with ISC to the triplet excited state, whose efficiency was determined to be less than unity. The populations predicted by the simulations are used to estimate the magnitudes of transition dipoles for excited state excitations and evaluate the influence of specific ligands. The mechanistic framework and methodology presented here are entirely general, applicable to other dye classes, and can be extended to include charge injection by molecules bound to semiconductor surfaces.

摘要

利用染料组装体最大限度地提高太阳能转换效率,关键在于了解吸收后能量的去向。溶液中的瞬态光谱学对此很有用,并且通常使用指数和来分析时间分辨数据。这种处理方法假设动态事件在时间上很好地分离,并且得到的指数前因子和唯象寿命与主要物理值直接相关。对于在三(2,2'-联吡啶)钌(2+)衍生物的瞬态吸收和光致发光中发生的同时吸收、发射和激发态弛豫等情况,这种假设就会失效,这就混淆了报告寿命的物理意义。在这项工作中,我们使用归纳建模和随机化学动力学来开发一系列 Ru 染料瞬态光谱中初级超快光物理的详细描述,作为指数和分析的替代方法。通常调用的涉及吸收、系间窜越(ISC)和缓慢非辐射弛豫以及非相干发射到基态的三能级方案,不能重现实验测量的光谱。动力学模拟表明,从单重激发态简并态到基态的超快衰减与ISC 到三重激发态竞争,ISC 到三重激发态的效率小于 1。模拟预测的种群用于估计激发态激发的跃迁偶极子的大小,并评估特定配体的影响。这里提出的机理框架和方法是完全通用的,适用于其他染料类,并可以扩展到包括与半导体表面结合的分子的电荷注入。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验