Suppr超能文献

阿特金森-艾伦模型中四种竞争物种的混沌吸引子。

Chaotic attractors in Atkinson-Allen model of four competing species.

机构信息

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.

Mathematics and Science College, Shanghai Normal University, Shanghai, People's Republic of China.

出版信息

J Biol Dyn. 2020 Dec;14(1):440-453. doi: 10.1080/17513758.2020.1779828.

Abstract

We study the occurrence of chaos in the Atkinson-Allen model of four competing species, which plays the role as a discrete-time Lotka-Volterra-type model. We show that in this model chaos can be generated by a cascade of quasiperiod-doubling bifurcations starting from a supercritical Neimark-Sacker bifurcation of the unique positive fixed point. The chaotic attractor is contained in a globally attracting invariant manifold of codimension one, known as the carrying simplex. Biologically, our study implies that the invasion attempts by an invader into a trimorphic population under Atkinson-Allen dynamics can lead to chaos.

摘要

我们研究了在具有四个竞争物种的 Atkinson-Allen 模型中混沌的发生,该模型起着离散时间的Lotka-Volterra 型模型的作用。我们表明,在该模型中,混沌可以通过从唯一正平衡点的超临界 Neimark-Sacker 分岔开始的准周期倍分叉级联产生。混沌吸引子包含在一个全局吸引的一维不变流形中,称为承载单纯形。从生物学角度来看,我们的研究表明,在 Atkinson-Allen 动力学下,入侵者对三态种群的入侵尝试可能导致混沌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验