Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
Mathematics and Science College, Shanghai Normal University, Shanghai, People's Republic of China.
J Biol Dyn. 2020 Dec;14(1):440-453. doi: 10.1080/17513758.2020.1779828.
We study the occurrence of chaos in the Atkinson-Allen model of four competing species, which plays the role as a discrete-time Lotka-Volterra-type model. We show that in this model chaos can be generated by a cascade of quasiperiod-doubling bifurcations starting from a supercritical Neimark-Sacker bifurcation of the unique positive fixed point. The chaotic attractor is contained in a globally attracting invariant manifold of codimension one, known as the carrying simplex. Biologically, our study implies that the invasion attempts by an invader into a trimorphic population under Atkinson-Allen dynamics can lead to chaos.
我们研究了在具有四个竞争物种的 Atkinson-Allen 模型中混沌的发生,该模型起着离散时间的Lotka-Volterra 型模型的作用。我们表明,在该模型中,混沌可以通过从唯一正平衡点的超临界 Neimark-Sacker 分岔开始的准周期倍分叉级联产生。混沌吸引子包含在一个全局吸引的一维不变流形中,称为承载单纯形。从生物学角度来看,我们的研究表明,在 Atkinson-Allen 动力学下,入侵者对三态种群的入侵尝试可能导致混沌。